The paper shows an application of Scale Recursive Estimation (SRE) used to assimilate rainfall rates estimated during a storm event from three remote sensing devices. These are the TMI radiometer and the PR radar, carried on board of the TRMM satellite and the KNQA Memphis Weather Surveillance radar, belonging to the NEXRAD network, each one providing rain rate estimates at a different spatial scale. The variability of rain rate process in scales is modeled as a multiplicative random cascade, including spatial intermittence. The observational noise in the estimates is modeled according to a multiplicative error. System estimation, including process and observational noise, is carried out using Maximum Likelihood Estimation implemented by a scale recursive Expectation Maximization (EM) algorithm. As a result, new rainfall rate estimates are obtained that feature decreased estimation error as compared to those coming from each device alone. The performance of the SRE-EM approach is compared with that of the latest methods proposed for data fusion of multisensor estimates. The proposed approach improves the current methods adopted for SRE and provides an alternative for data fusion in the field of precipitation.

Use of Scale Recursive Estimation for multisensor rainfall assimilation: a case study using data from TRMM (PR and TMI) and NEXRAD

BOCCHIOLA, DANIELE
2007-01-01

Abstract

The paper shows an application of Scale Recursive Estimation (SRE) used to assimilate rainfall rates estimated during a storm event from three remote sensing devices. These are the TMI radiometer and the PR radar, carried on board of the TRMM satellite and the KNQA Memphis Weather Surveillance radar, belonging to the NEXRAD network, each one providing rain rate estimates at a different spatial scale. The variability of rain rate process in scales is modeled as a multiplicative random cascade, including spatial intermittence. The observational noise in the estimates is modeled according to a multiplicative error. System estimation, including process and observational noise, is carried out using Maximum Likelihood Estimation implemented by a scale recursive Expectation Maximization (EM) algorithm. As a result, new rainfall rate estimates are obtained that feature decreased estimation error as compared to those coming from each device alone. The performance of the SRE-EM approach is compared with that of the latest methods proposed for data fusion of multisensor estimates. The proposed approach improves the current methods adopted for SRE and provides an alternative for data fusion in the field of precipitation.
2007
Remote sensing; Data fusion; Scale Recursive Estimation; Maximum likelihood
File in questo prodotto:
File Dimensione Formato  
Bocchiola_SRE_EM_AWR_07.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.86 MB
Formato Adobe PDF
3.86 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/552065
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact