A capillary electrophoresis method for separation and detection with time-of-flight mass spectrometry is described for tryptophan metabolites in the kynurenic pathway. Tryptophan metabolites are usually difficult to detect with electrospray mass spectrometry since they have low surface activity and occur in low nanomolar to micromolar range in body fluids. Modification of the silica-wall with 1-(4-iodobutyl)4-aza-1-azoniabicyclo[2,2,2]octane iodide, also named M7C4I, has successfully been used to deactivate the fused silica wall and generate a stable reversed electroosmotic flow. Utilizing this advantage together with electrospray ionization time-of-flight mass spectrometry, which generates high resolution and fast acquisition monitoring of species, proved to be successful even for such a complex matrix like human cerebrospinal fluid

High throughput analysis of tryptophan metabolites in a complex matrix using capillary electrophoresis coupled to time-of-flight mass spectrometry

CITTERIO, ATTILIO;RIGHETTI, PIERGIORGIO;
2007-01-01

Abstract

A capillary electrophoresis method for separation and detection with time-of-flight mass spectrometry is described for tryptophan metabolites in the kynurenic pathway. Tryptophan metabolites are usually difficult to detect with electrospray mass spectrometry since they have low surface activity and occur in low nanomolar to micromolar range in body fluids. Modification of the silica-wall with 1-(4-iodobutyl)4-aza-1-azoniabicyclo[2,2,2]octane iodide, also named M7C4I, has successfully been used to deactivate the fused silica wall and generate a stable reversed electroosmotic flow. Utilizing this advantage together with electrospray ionization time-of-flight mass spectrometry, which generates high resolution and fast acquisition monitoring of species, proved to be successful even for such a complex matrix like human cerebrospinal fluid
2007
File in questo prodotto:
File Dimensione Formato  
551836.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 221.93 kB
Formato Adobe PDF
221.93 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/551836
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 42
social impact