This paper deals with the problem of radio localization of moving terminals (MTs) for indoor applications with mixed line-of-sight/non-line-of-sight (LOS/NLOS) conditions. To reduce false localizations, a grid-based Bayesian approach is proposed to jointly track the sequence of the positions and the sight conditions of the MT. This method is based on the assumption that both the MT position and the sight condition are Markov chains whose state is hidden in the received signals [hidden Markov model (HMM)]. The observations used for the HMM localization are obtained from the power-delay profile of the received signals. In ultrawideband (UWB) systems, the use of the whole power-delay profile, rather than the total power only, allows to reach higher localization accuracy, as the power-profile is a joint measurement of time of arrival and power. Numerical results show that the proposed HMM method improves the accuracy of localization with respect to conventional ranging methods, especially in mixed LOS/NLOS indoor environments.

Hidden Markov models for radio localization in mixed LOS/NLOS conditions

NICOLI, MONICA BARBARA;RAMPA, VITTORIO;SPAGNOLINI, UMBERTO
2007-01-01

Abstract

This paper deals with the problem of radio localization of moving terminals (MTs) for indoor applications with mixed line-of-sight/non-line-of-sight (LOS/NLOS) conditions. To reduce false localizations, a grid-based Bayesian approach is proposed to jointly track the sequence of the positions and the sight conditions of the MT. This method is based on the assumption that both the MT position and the sight condition are Markov chains whose state is hidden in the received signals [hidden Markov model (HMM)]. The observations used for the HMM localization are obtained from the power-delay profile of the received signals. In ultrawideband (UWB) systems, the use of the whole power-delay profile, rather than the total power only, allows to reach higher localization accuracy, as the power-profile is a joint measurement of time of arrival and power. Numerical results show that the proposed HMM method improves the accuracy of localization with respect to conventional ranging methods, especially in mixed LOS/NLOS indoor environments.
2007
Localization; wireless positioning; Bayesian tracking; hidden Markov models; ultrawideband communications; wireless networks
File in questo prodotto:
File Dimensione Formato  
2007_TSP.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/551833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 105
  • ???jsp.display-item.citation.isi??? 74
social impact