The authors show the uniqueness of the ``good solution'' to the Cauchy-Dirichlet problem for linear non-variational parabolic equations with the coefficients of the principal part with discontinuities, in cases in which in general uniqueness of strong solutions in Sobolev spaces does not hold. The notion of the ``good solution'' to the elliptic equations was introduced by the first author in [M. C. Cerutti, L. Escauriaza and E. B. Fabes, Ann. Mat. Pura Appl. (4) 163 (1993), 161--180

Uniqueness for second-order parabolic equations with discontinuous coefficients

CERUTTI, MARIA CRISTINA;
2007-01-01

Abstract

The authors show the uniqueness of the ``good solution'' to the Cauchy-Dirichlet problem for linear non-variational parabolic equations with the coefficients of the principal part with discontinuities, in cases in which in general uniqueness of strong solutions in Sobolev spaces does not hold. The notion of the ``good solution'' to the elliptic equations was introduced by the first author in [M. C. Cerutti, L. Escauriaza and E. B. Fabes, Ann. Mat. Pura Appl. (4) 163 (1993), 161--180
2007
File in questo prodotto:
File Dimensione Formato  
AMPA.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 205.83 kB
Formato Adobe PDF
205.83 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/551473
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact