In this paper we investigate generalized circulant permutation ma- trices of composite order. We give a complete characterization of the order and the structure of symmetric generalized k{circulant permu- tation matrices in terms of circulant and retrocirculant block (0; 1){ matrices in which each block contains exactly one or two entries 1. In particular, we prove that a generalized k{circulant matrix A of com- posite order n = km is symmetric if and only if either k = m 1 or k 0 or k 1 modulo m, and we obtain three basic symmetric gener- alized k{circulant permutation matrices, from which all others are ob- tained via permutations of the blocks or by direct sums. Furthermore, we extend the characterization of these matrices to centrosymmetric matrices.

Highly symmetric generalized circulant permutation matrices

SALVI, RODOLFO;ZAGAGLIA, NORMA
2008-01-01

Abstract

In this paper we investigate generalized circulant permutation ma- trices of composite order. We give a complete characterization of the order and the structure of symmetric generalized k{circulant permu- tation matrices in terms of circulant and retrocirculant block (0; 1){ matrices in which each block contains exactly one or two entries 1. In particular, we prove that a generalized k{circulant matrix A of com- posite order n = km is symmetric if and only if either k = m 1 or k 0 or k 1 modulo m, and we obtain three basic symmetric gener- alized k{circulant permutation matrices, from which all others are ob- tained via permutations of the blocks or by direct sums. Furthermore, we extend the characterization of these matrices to centrosymmetric matrices.
2008
File in questo prodotto:
File Dimensione Formato  
PerSymM.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 130.92 kB
Formato Adobe PDF
130.92 kB Adobe PDF   Visualizza/Apri
PerSymMAbstract.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 22.28 kB
Formato Adobe PDF
22.28 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/550401
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact