We consider a strongly local (p-homogeneous) Riemannian Dirichlet form, according to the definition by Biroli - Vernole. We introduce the Kato class of Radon measures related to such forms and the corresponding relaxed Dirichlet problems with measures in the Kato class. We establish a Wiener criterion in the interior for the local solutions of the relaxed Dirichlet problem: an interior point is regular iff it is a Wiener point.
Wiener criterion for relaxed Dirichlet problem relative to Riemannian $p$-homogeneous Dirichlet forms
BIROLI, MARCO;DAL FABBRO, FLORANGELA;
2008-01-01
Abstract
We consider a strongly local (p-homogeneous) Riemannian Dirichlet form, according to the definition by Biroli - Vernole. We introduce the Kato class of Radon measures related to such forms and the corresponding relaxed Dirichlet problems with measures in the Kato class. We establish a Wiener criterion in the interior for the local solutions of the relaxed Dirichlet problem: an interior point is regular iff it is a Wiener point.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ukrain_2008.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
229.57 kB
Formato
Adobe PDF
|
229.57 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.