We present a coupled finite element, Kalman filter approach to foresee impactinduced delamination of layered composites when mechanical properties are partially unknown. Since direct numerical simulations, which require all the constitutive parameters to be assigned, cannot be run in such cases, an inverse problem is formulated to allow for modeling as well as constitutive uncertainties. Upon space discretization through finite elements and time integration through the explicit ®¡method, the resulting nonlinear stochastic state model, wherein nonlinearities are due to delamination growth, is attacked with sigma-point Kalman filtering. Comparison with experimental data available in the literature and concerning inter-laminar failure of layered composites subject to low-velocity impacts, shows that the proposed procedure leads to: an accurate description of the failure mode; converged estimates of inter-laminar strength and toughness in good agreement with experimental data.
Failure assessment of layered composites subject to impact loadings: a finite element, sigma-point Kalman filter approach
MARIANI, STEFANO
2009-01-01
Abstract
We present a coupled finite element, Kalman filter approach to foresee impactinduced delamination of layered composites when mechanical properties are partially unknown. Since direct numerical simulations, which require all the constitutive parameters to be assigned, cannot be run in such cases, an inverse problem is formulated to allow for modeling as well as constitutive uncertainties. Upon space discretization through finite elements and time integration through the explicit ®¡method, the resulting nonlinear stochastic state model, wherein nonlinearities are due to delamination growth, is attacked with sigma-point Kalman filtering. Comparison with experimental data available in the literature and concerning inter-laminar failure of layered composites subject to low-velocity impacts, shows that the proposed procedure leads to: an accurate description of the failure mode; converged estimates of inter-laminar strength and toughness in good agreement with experimental data.File | Dimensione | Formato | |
---|---|---|---|
algorithms_Mariani_2009_published.pdf
Accesso riservato
:
Altro materiale allegato
Dimensione
623.47 kB
Formato
Adobe PDF
|
623.47 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.