This paper presents a numerical model of a porous, hydroxyapatite-based bone graft also suitable as a drug delivery device. The graft was positioned in different sites and with different porosities inside a human femur model. The structural analyses were carried out to verify the graft mechanical strength, using the Tsai–Wu criterion, and the maximum porosity at which static failure does not occur. A local stress shielding risk was also calculated as the ratio between the bone stress in the intact condition and the stress after implantation of the graft. Drug release kinetics was calculated by means of the finite element method. High porosity grafts were found to fail in all implantation sites. Lower porosity grafts showed to have adequate strength if implanted in some positions, while provided insufficient resistance for other implantation sites. Drug release kinetics was found to be strongly dependent both on the porosity of the graft and the bone density near the bone-graft interface.

Combined computational study of mechanical behaviour and drug delivery from a porous, hydroxyapatite-based bone graft

DUBINI, GABRIELE ANGELO
2009-01-01

Abstract

This paper presents a numerical model of a porous, hydroxyapatite-based bone graft also suitable as a drug delivery device. The graft was positioned in different sites and with different porosities inside a human femur model. The structural analyses were carried out to verify the graft mechanical strength, using the Tsai–Wu criterion, and the maximum porosity at which static failure does not occur. A local stress shielding risk was also calculated as the ratio between the bone stress in the intact condition and the stress after implantation of the graft. Drug release kinetics was calculated by means of the finite element method. High porosity grafts were found to fail in all implantation sites. Lower porosity grafts showed to have adequate strength if implanted in some positions, while provided insufficient resistance for other implantation sites. Drug release kinetics was found to be strongly dependent both on the porosity of the graft and the bone density near the bone-graft interface.
2009
File in questo prodotto:
File Dimensione Formato  
BMMB 2009.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 705.33 kB
Formato Adobe PDF
705.33 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/546999
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 6
social impact