In this paper the effects of accidental impacts on polysilicon MEMS sensors are investigated within the framework of a three-scale finite element approach. By allowing for the very small ratio (on the order of 10−4) between the inertia of the MEMS and the inertia of the whole device, macro-scale analyses at the package length-scale are run to obtain the load-ing conditions at the sensor anchor points. These loading conditions are successively adopted in meso-scale analyses at the MEMS length-scale to detect where the stress level tends to be amplified by sensor layout. To foresee failure of polysilicon in these domains, as caused by the propagation of inter- as well as transgranular cracks up to percolation, representative crystal topologies are handled in micro-scale analyses. In case of a uni-axial MEMS accelerometer falling from a reference drop height, results show that the crystal structure within the failing sensor detail can have a remarkable effect on the failure mode and on the time to failure. Conversely, through comparison with simulations where the MEMS is assumed to fall anchored to the naked die, it is assessed that packaging only slightly modifies failure details, without significantly reducing the shock loading on the sensor.

A three-scale FE approach to reliability analysis of MEMS sensors subject to impacts

MARIANI, STEFANO;GHISI, ALDO FRANCESCO;CORIGLIANO, ALBERTO;
2008

Abstract

In this paper the effects of accidental impacts on polysilicon MEMS sensors are investigated within the framework of a three-scale finite element approach. By allowing for the very small ratio (on the order of 10−4) between the inertia of the MEMS and the inertia of the whole device, macro-scale analyses at the package length-scale are run to obtain the load-ing conditions at the sensor anchor points. These loading conditions are successively adopted in meso-scale analyses at the MEMS length-scale to detect where the stress level tends to be amplified by sensor layout. To foresee failure of polysilicon in these domains, as caused by the propagation of inter- as well as transgranular cracks up to percolation, representative crystal topologies are handled in micro-scale analyses. In case of a uni-axial MEMS accelerometer falling from a reference drop height, results show that the crystal structure within the failing sensor detail can have a remarkable effect on the failure mode and on the time to failure. Conversely, through comparison with simulations where the MEMS is assumed to fall anchored to the naked die, it is assessed that packaging only slightly modifies failure details, without significantly reducing the shock loading on the sensor.
MECCANICA
Drop impacts; Shocks; Polysilicon; MEMS sensors; Multi-scale FE analysis; Micro-mechanics
File in questo prodotto:
File Dimensione Formato  
Mariani_et_al_Meccanica08-published.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/545085
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 30
social impact