In this work the response of a commercial polysilicon MEMS accelerometer subject to shocks in the range 90–5500 g (g being the gravity acceleration) is studied. In situ measurements are compared with results of numerical simulations, obtained via a two-degrees-of-freedom model of sensor dynamics. It is shown that, despite several sources of nonlinearities, the numerical model can capture the main features of the MEMS transient response. The tested devices did not show malfunctioning, even when subject to acceleration peaks 100 times greater than those characterizing the working regime.
Polysilicon MEMS accelerometers exposed to shocks: numerical-experimental investigation
GHISI, ALDO FRANCESCO;MARIANI, STEFANO;CORIGLIANO, ALBERTO
2009-01-01
Abstract
In this work the response of a commercial polysilicon MEMS accelerometer subject to shocks in the range 90–5500 g (g being the gravity acceleration) is studied. In situ measurements are compared with results of numerical simulations, obtained via a two-degrees-of-freedom model of sensor dynamics. It is shown that, despite several sources of nonlinearities, the numerical model can capture the main features of the MEMS transient response. The tested devices did not show malfunctioning, even when subject to acceleration peaks 100 times greater than those characterizing the working regime.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
jmm9_3_035023-published.pdf
Accesso riservato
:
Altro materiale allegato
Dimensione
1.83 MB
Formato
Adobe PDF
|
1.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.