Usual coherence estimation in SAR interferometry is a time consuming task since an accurate estimation of the local frequency of the interferometric fringes is required. This paper presents a fast algorithm for generating coherence maps, mainly intended for data browsing. The proposed estimator is based on the speckle similarity of coherent SAR data, and is thus independent of fringe frequency. The following advantages, with respect to the usual estimates, are achieved: (a) The estimator is more than 100 times faster, achieved at the cost of a reduced statistical confidence. (b) The estimator is not affected by possible local frequency estimation errors. (c) The estimator can be directly applied to single look detected images. The theoretical derivation of the statistical properties of the frequency independent estimator is carried out in the stationary case. The nonstationary case is then analyzed on real ERS SAR images
SAR Interferometry: a "Quick and Dirty" Coherence Estimator for Data Browsing
MONTI-GUARNIERI, ANDREA VIRGILIO;PRATI, CLAUDIO MARIA
1997-01-01
Abstract
Usual coherence estimation in SAR interferometry is a time consuming task since an accurate estimation of the local frequency of the interferometric fringes is required. This paper presents a fast algorithm for generating coherence maps, mainly intended for data browsing. The proposed estimator is based on the speckle similarity of coherent SAR data, and is thus independent of fringe frequency. The following advantages, with respect to the usual estimates, are achieved: (a) The estimator is more than 100 times faster, achieved at the cost of a reduced statistical confidence. (b) The estimator is not affected by possible local frequency estimation errors. (c) The estimator can be directly applied to single look detected images. The theoretical derivation of the statistical properties of the frequency independent estimator is carried out in the stationary case. The nonstationary case is then analyzed on real ERS SAR imagesFile | Dimensione | Formato | |
---|---|---|---|
getPDF.pdf
Accesso riservato
:
Altro materiale allegato
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.