The success of wireless sensor networks and their pervasive use is somehow constrained by energy supply which, generally provided by batteries, is a finite resource. Energy harvesting mechanisms must hence be taken into account to grant a long time operational life, with solar energy being the most interesting one in outdoor deployments due to its relatively high power density. In this paper we propose a low-power maximum power point tracker (MPPT) circuit specifically designed for wireless sensor nodes (hence effective, flexible, low cost and power-aware), i.e., a power transferring circuit for optimally conveying solar energy into rechargeable batteries even in not optimal weather conditions. High efficiency is granted by an ad hoc adaptive algorithm which, by keeping the MPPT electronics in its optimal working point, maximizes energy transfer from the solar cell to the batteries. The suggested implementation is particularly effective in critical weather conditions where traditional solutions do not work and is characterized by a flexible enough design for immediately hosting, in a plug in fashion, different solar panels and battery typologies.
An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes
ALIPPI, CESARE;GALPERTI, CRISTIAN
2008-01-01
Abstract
The success of wireless sensor networks and their pervasive use is somehow constrained by energy supply which, generally provided by batteries, is a finite resource. Energy harvesting mechanisms must hence be taken into account to grant a long time operational life, with solar energy being the most interesting one in outdoor deployments due to its relatively high power density. In this paper we propose a low-power maximum power point tracker (MPPT) circuit specifically designed for wireless sensor nodes (hence effective, flexible, low cost and power-aware), i.e., a power transferring circuit for optimally conveying solar energy into rechargeable batteries even in not optimal weather conditions. High efficiency is granted by an ad hoc adaptive algorithm which, by keeping the MPPT electronics in its optimal working point, maximizes energy transfer from the solar cell to the batteries. The suggested implementation is particularly effective in critical weather conditions where traditional solutions do not work and is characterized by a flexible enough design for immediately hosting, in a plug in fashion, different solar panels and battery typologies.File | Dimensione | Formato | |
---|---|---|---|
04490281.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
976.41 kB
Formato
Adobe PDF
|
976.41 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.