We extend to p-dimensional problems a modification of the Newton method, based on quadrature formulas of order at least one, which produces iterative methods with order of convergence three. A general error analysis providing the higher order of convergence is given. These new methods may be more efficient then other third-order methods as they do not require the use of the second-order Frechet derivative.
Third-order methods from quadrature formulae for solving systems of non-linear equations
FRONTINI, MARCO;
2004-01-01
Abstract
We extend to p-dimensional problems a modification of the Newton method, based on quadrature formulas of order at least one, which produces iterative methods with order of convergence three. A general error analysis providing the higher order of convergence is given. These new methods may be more efficient then other third-order methods as they do not require the use of the second-order Frechet derivative.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
FS3d.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
212.48 kB
Formato
Adobe PDF
|
212.48 kB | Adobe PDF | Visualizza/Apri |
AbstFS3d.pdf
Accesso riservato
:
Altro materiale allegato
Dimensione
13.28 kB
Formato
Adobe PDF
|
13.28 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.