Abstract: Case-deleted analysis is a popular method for evaluating the influence of a subset of cases on inference. The use of Monte Carlo estimation strategies in complicated Bayesian settings leads naturally to the use of importance sampling techniques to assess the divergence between full-data and case-deleted posteriors and to provide estimates under the case-deleted posteriors. However, the dependability of the importance sampling estimators depends critically on the variability of the case-deleted weights. We provide theoretical results concerning the assessment of the dependability of case-deleted importance sampling estimators in several Bayesian models. In particular, these results allow us to establish whether or not the estimators satisfy a central limit theorem. Because the conditions we derive are of a simple analytical nature, the assessment of the dependability of the estimators can be verified routinely before estimation is performed. We illustrate the use of the results in several examples.

Case-deletion importance sampling estimators: central limit theorems and related results

EPIFANI, ILENIA;
2008-01-01

Abstract

Abstract: Case-deleted analysis is a popular method for evaluating the influence of a subset of cases on inference. The use of Monte Carlo estimation strategies in complicated Bayesian settings leads naturally to the use of importance sampling techniques to assess the divergence between full-data and case-deleted posteriors and to provide estimates under the case-deleted posteriors. However, the dependability of the importance sampling estimators depends critically on the variability of the case-deleted weights. We provide theoretical results concerning the assessment of the dependability of case-deleted importance sampling estimators in several Bayesian models. In particular, these results allow us to establish whether or not the estimators satisfy a central limit theorem. Because the conditions we derive are of a simple analytical nature, the assessment of the dependability of the estimators can be verified routinely before estimation is performed. We illustrate the use of the results in several examples.
2008
Infinite Variance; Influence; Leverage; Marginal Residual Sum of Squares; Markov Chain Monte Carlo; Model Averaging; Moment Index; Tail Behavior
File in questo prodotto:
File Dimensione Formato  
EpifaniMacEachernPeruggia2008.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.03 MB
Formato Adobe PDF
3.03 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/524442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 16
social impact