This article deals with the analysis of the functional iteration, denoted Generalized Gummel Map (GGM), proposed in [C. de Falco, A.L. Lacaita, E. Gatti, R. Sacco, Quantum-Corrected Drift-Diffusion Models for Transport in Semiconductor Devices, J. Comp. Phys. 204 (2) (2005) 533–561] for the decoupled solution of the Quantum Drift-Diffusion (QDD) model. The solution of the problem is characterized as being a fixed point of the GGM, which permits the establishment of a close link between the theoretical existence analysis and the implementation of a numerical tool, which was lacking in previous non-constructive proofs [N.B. Abdallah, A. Unterreiter, On the stationary quantum drift-diffusion model, Z. Angew. Math. Phys. 49 (1998) 251–275, R. Pinnau, A. Unterreiter, The stationary current–voltage characteristics of the quantum drift-diffusion model, SIAM J. Numer. Anal. 37 (1) (1999) 211–245]. The finite element approximation of the GGM is illustrated, and the main properties of the numerical fixed point map (discrete maximum principle and order of convergence) are discussed. Numerical results on realistic nanoscale devices are included to support the theoretical conclusions.

Quantum Corrected Drift-Diffusion Models: Solution Fixed Point Map and Finite Element Approximation

DE FALCO, CARLO;SACCO, RICCARDO
2009-01-01

Abstract

This article deals with the analysis of the functional iteration, denoted Generalized Gummel Map (GGM), proposed in [C. de Falco, A.L. Lacaita, E. Gatti, R. Sacco, Quantum-Corrected Drift-Diffusion Models for Transport in Semiconductor Devices, J. Comp. Phys. 204 (2) (2005) 533–561] for the decoupled solution of the Quantum Drift-Diffusion (QDD) model. The solution of the problem is characterized as being a fixed point of the GGM, which permits the establishment of a close link between the theoretical existence analysis and the implementation of a numerical tool, which was lacking in previous non-constructive proofs [N.B. Abdallah, A. Unterreiter, On the stationary quantum drift-diffusion model, Z. Angew. Math. Phys. 49 (1998) 251–275, R. Pinnau, A. Unterreiter, The stationary current–voltage characteristics of the quantum drift-diffusion model, SIAM J. Numer. Anal. 37 (1) (1999) 211–245]. The finite element approximation of the GGM is illustrated, and the main properties of the numerical fixed point map (discrete maximum principle and order of convergence) are discussed. Numerical results on realistic nanoscale devices are included to support the theoretical conclusions.
2009
Quantum and drift-diffusion models; Density-gradient; Schrödinger–Poisson; Functional iterations; Finite element method; Nanoscale semiconductor devices; Semi-linear elliptic systems
File in questo prodotto:
File Dimensione Formato  
ggmJCPfinal.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/521191
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 23
social impact