Indentation tests are frequently employed at present for the identification of material parameters at different scales. An innovative inverse analysis technique, recently proposed by the Authors, combines the traditional indentation test with the mapping of the residual deformations (imprint), thus providing experimental data apt to be used to identify material parameters in film-substrate systems. In this paper, such methodology is enhanced to permit the identification of the fracture properties of the interface between a coating and its substrate once the bulk material parameters are known. In order to make the inverse problem well posed, a further set of experimental data, namely the horizontal displacement field measured on the film external surface, is considered as available experimental information. The sought material parameters are recovered through recursive calculations of the mechanical response of the film-substrate system, performed by a finite strain numerical simulation. The coating and a significant portion of the underlying bulk material are incorporated in the finite element models built up to this purpose, while delamination is accounted for through cohesive elements. The inverse analysis procedure rests on a batch, deterministic approach and conventional optimization algorithms are employed for the minimization of a suitably defined discrepancy norm. Extensive numerical computations have been performed in order to test the performance of the proposed methodology in terms of result accuracy and computational effort.

Indentation and imprint mapping for the identification of interface properties in film substrate systems

BOCCIARELLI, MASSIMILIANO;BOLZON, GABRIELLA
2009-01-01

Abstract

Indentation tests are frequently employed at present for the identification of material parameters at different scales. An innovative inverse analysis technique, recently proposed by the Authors, combines the traditional indentation test with the mapping of the residual deformations (imprint), thus providing experimental data apt to be used to identify material parameters in film-substrate systems. In this paper, such methodology is enhanced to permit the identification of the fracture properties of the interface between a coating and its substrate once the bulk material parameters are known. In order to make the inverse problem well posed, a further set of experimental data, namely the horizontal displacement field measured on the film external surface, is considered as available experimental information. The sought material parameters are recovered through recursive calculations of the mechanical response of the film-substrate system, performed by a finite strain numerical simulation. The coating and a significant portion of the underlying bulk material are incorporated in the finite element models built up to this purpose, while delamination is accounted for through cohesive elements. The inverse analysis procedure rests on a batch, deterministic approach and conventional optimization algorithms are employed for the minimization of a suitably defined discrepancy norm. Extensive numerical computations have been performed in order to test the performance of the proposed methodology in terms of result accuracy and computational effort.
2009
Indentation; Imprint mapping; Inverse analysis; Film substrate systems; Interface properties
File in questo prodotto:
File Dimensione Formato  
Paper-BB2.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 705.33 kB
Formato Adobe PDF
705.33 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/516054
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact