We study the Hilbert scheme of non degenerate locally Cohen-Macaulay projective curves with general hyperplane section spanning a linear space of dimension 2 and minimal Hilbert function. The main result is that those curves are almost always the general element of a generically smooth component $ H_{n,d,g} $ of the corresponding Hilbert scheme. Moreover, we show that the curves with maximal cohomology almost always correspond to smooth points of $ H_{n,d,g}.$

Non degenerate projective curves with very degenerate hyperplane section

NOTARI, ROBERTO;
2005-01-01

Abstract

We study the Hilbert scheme of non degenerate locally Cohen-Macaulay projective curves with general hyperplane section spanning a linear space of dimension 2 and minimal Hilbert function. The main result is that those curves are almost always the general element of a generically smooth component $ H_{n,d,g} $ of the corresponding Hilbert scheme. Moreover, we show that the curves with maximal cohomology almost always correspond to smooth points of $ H_{n,d,g}.$
2005
File in questo prodotto:
File Dimensione Formato  
non-degenerate-curves.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 301.42 kB
Formato Adobe PDF
301.42 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/513912
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact