We present a class of Learning Classifier Systems that learn fuzzy rule-based models, instead of interval-based or Boolean models. We discuss some motivations to consider Learning Fuzzy Classifier Systems (LFCS) as a promising approach to learn mappings from real-valued input to real-valued output, basing on data interpretation implemented by fuzzy sets. We describe some of the approaches explicitly or implicitly referring to this research area, presented in literature since the beginning of the last decade. We also show how the general LFCS model can be considered as a framework for a wide range of systems, each implementing in a different way the modules composing the basic architecture. We also mention some of the applications of LFCS presented in literature, which show the potentialities of this type of systems. Finally, we introduce a general methodology to extend reinforcement distribution algorithms usually not designed to learn fuzzy models. This opens new application possibilities.
An introduction to learning fuzzy classifier systems
BONARINI, ANDREA
2000-01-01
Abstract
We present a class of Learning Classifier Systems that learn fuzzy rule-based models, instead of interval-based or Boolean models. We discuss some motivations to consider Learning Fuzzy Classifier Systems (LFCS) as a promising approach to learn mappings from real-valued input to real-valued output, basing on data interpretation implemented by fuzzy sets. We describe some of the approaches explicitly or implicitly referring to this research area, presented in literature since the beginning of the last decade. We also show how the general LFCS model can be considered as a framework for a wide range of systems, each implementing in a different way the modules composing the basic architecture. We also mention some of the applications of LFCS presented in literature, which show the potentialities of this type of systems. Finally, we introduce a general methodology to extend reinforcement distribution algorithms usually not designed to learn fuzzy models. This opens new application possibilities.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.