The paper deals with any 2D solid of prescribed shape and elastic properties, consisting of an orthotropic micropolar material. The conditions are determined under which the global stiffness of the solid is maximized, taking the orientation of the material symmetry axes to the local extreme strains as design variable. Unlike Cauchy solids, it is shown that the maximum stiffness problem for micropolar solids is not fulfilled by ‘trivial’ solutions, at which full collinearity of the material symmetry axes and the directions of the extreme strains is achieved. The paper closes with the determination of the optimal orientations for a special elasticity problem.
Extrema of the strain energy density for anisotropic micropolar solids
TALIERCIO, ALBERTO
2007-01-01
Abstract
The paper deals with any 2D solid of prescribed shape and elastic properties, consisting of an orthotropic micropolar material. The conditions are determined under which the global stiffness of the solid is maximized, taking the orientation of the material symmetry axes to the local extreme strains as design variable. Unlike Cauchy solids, it is shown that the maximum stiffness problem for micropolar solids is not fulfilled by ‘trivial’ solutions, at which full collinearity of the material symmetry axes and the directions of the extreme strains is achieved. The paper closes with the determination of the optimal orientations for a special elasticity problem.File | Dimensione | Formato | |
---|---|---|---|
veber-taliercio.pdf
Accesso riservato
:
Altro materiale allegato
Dimensione
348.29 kB
Formato
Adobe PDF
|
348.29 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.