In mountain-rescue operations injured people are generally exposed to vibrations and shocks that can be potential causes of physical conditions worsening. Such vibrations can derive both from patient’s body manipulations (e.g. when it is being loaded and immobilized on a stretcher) and from forces coming from the transport devices and vehicles. Despite the general feeling that during this kind of operations the levels of transmitted vibrations to the injured can be quite large and potentially dangerous, there is practically no study in literature providing reliable parameters (i.e. measurements) to support or dismiss these beliefs. This paper reports the results of a measurement campaign carried-out in order to outline, identify and quantify the excitations a human body is exposed to, during typical transportation phases related to mountain-rescue operations. The work mainly presents and discusses the experimental setup with the aim of focusing on the problems related to this kind of measurements; the results of the experimental campaign carried-out for the measurement of the vibrations undergone by a human body during a simulated rescue operation are presented and discussed as well. Such simulation includes three phases of transportation: on a hand-held stretcher, on an ambulance and on a helicopter. The work is not intended to supply a complete characterization and analysis of vibrations transmission during any rescue operation but just to provide a preliminary overview and to define a measurement method that can be applied for a more comprehensive characterization. With such aims measurements were carried out in on-field situations stated as ‘‘typical’’ by rescue experts and data then analyzed both with standard procedures and algorithms (e.g. ISO 2631s weighting curves) and with the commonly used statistical indexes; in the analysis it is important to be aware that standardized measurement procedures and indexes, created to verify comfort or health-risks of workers, might not fit the case of a generic patient who experienced a serious mountain accident. The work includes also a laboratory activity mainly related to mechanical characterization of the stretcher used in the field tests. The most interesting result of the study is the comparison of the vibration levels in the various rescue phases that, even when using different indicators, shows that the most critical issue is due to hand transportation despite the bad judgment usually expressed for helicopter flight.

Whole body vibration in mountain-rescue operations

ALBERTI, EDOARDO ANDREA;MOSCHIONI, GIOVANNI;SAGGIN, BORTOLINO;TARABINI, MARCO
2006-01-01

Abstract

In mountain-rescue operations injured people are generally exposed to vibrations and shocks that can be potential causes of physical conditions worsening. Such vibrations can derive both from patient’s body manipulations (e.g. when it is being loaded and immobilized on a stretcher) and from forces coming from the transport devices and vehicles. Despite the general feeling that during this kind of operations the levels of transmitted vibrations to the injured can be quite large and potentially dangerous, there is practically no study in literature providing reliable parameters (i.e. measurements) to support or dismiss these beliefs. This paper reports the results of a measurement campaign carried-out in order to outline, identify and quantify the excitations a human body is exposed to, during typical transportation phases related to mountain-rescue operations. The work mainly presents and discusses the experimental setup with the aim of focusing on the problems related to this kind of measurements; the results of the experimental campaign carried-out for the measurement of the vibrations undergone by a human body during a simulated rescue operation are presented and discussed as well. Such simulation includes three phases of transportation: on a hand-held stretcher, on an ambulance and on a helicopter. The work is not intended to supply a complete characterization and analysis of vibrations transmission during any rescue operation but just to provide a preliminary overview and to define a measurement method that can be applied for a more comprehensive characterization. With such aims measurements were carried out in on-field situations stated as ‘‘typical’’ by rescue experts and data then analyzed both with standard procedures and algorithms (e.g. ISO 2631s weighting curves) and with the commonly used statistical indexes; in the analysis it is important to be aware that standardized measurement procedures and indexes, created to verify comfort or health-risks of workers, might not fit the case of a generic patient who experienced a serious mountain accident. The work includes also a laboratory activity mainly related to mechanical characterization of the stretcher used in the field tests. The most interesting result of the study is the comparison of the vibration levels in the various rescue phases that, even when using different indicators, shows that the most critical issue is due to hand transportation despite the bad judgment usually expressed for helicopter flight.
2006
File in questo prodotto:
File Dimensione Formato  
Whole-body-vibration-in-mountain-rescue-operations_2006_Journal-of-Sound-and-Vibration.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 380.84 kB
Formato Adobe PDF
380.84 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/274573
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact