In this paper we consider a nonsymmetric elliptic problem and we use the techniques related to the Steklov–Poincaré operators to propose new substructuring iterative procedures. In particular, we propose two methods that generalize the well-known Neumann–Neumann and Dirichlet–Neumann iterative procedures. We prove that our methods, that use symmetric and positive-definite preconditioners, lead to the construction of iterative schemes with optimal convergence properties. Numerical results for the finite element discretization are given.

New substructuring domain decomposition methods for advection-diffusion equations

QUARTERONI, ALFIO MARIA;SALERI, FAUSTO EMILIO
2000-01-01

Abstract

In this paper we consider a nonsymmetric elliptic problem and we use the techniques related to the Steklov–Poincaré operators to propose new substructuring iterative procedures. In particular, we propose two methods that generalize the well-known Neumann–Neumann and Dirichlet–Neumann iterative procedures. We prove that our methods, that use symmetric and positive-definite preconditioners, lead to the construction of iterative schemes with optimal convergence properties. Numerical results for the finite element discretization are given.
2000
Domain decomposition; Advection–diffusion equations; Substructuring
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/274255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact