One of the main drawbacks of Single Photon Avalanche Diode arrays is the optical crosstalk between adjacent detectors. This phenomenon represents a fundamental limit to the density of arrays, since the crosstalk increases with reducing the distance between adjacent devices. In the past, crosstalk was mainly ascribed to the light propagating from one detector to another through a direct optical path. Accordingly, deep trenches coated with metal were introduced as optical isolation barriers between pixels. This solution, however, was unable to completely prevent the crosstalk. In this paper we present experimental evidence that a significant contribution to crosstalk comes from photons reflected internally at the bottom of the chip. These photons can bypass trenches making them ineffective. We also propose an optical model suitable to predict the dependence of crosstalk on the position within the array.

In-depth analysis of optical crosstalk in single-photon avalanche diode arrays

RECH, IVAN;INGARGIOLA, ANTONINO;SPINELLI, ROBERTO;LABANCA, IVAN GIUSEPPE;MARANGONI, STEFANO;GHIONI, MASSIMO ANTONIO;COVA, SERGIO
2007-01-01

Abstract

One of the main drawbacks of Single Photon Avalanche Diode arrays is the optical crosstalk between adjacent detectors. This phenomenon represents a fundamental limit to the density of arrays, since the crosstalk increases with reducing the distance between adjacent devices. In the past, crosstalk was mainly ascribed to the light propagating from one detector to another through a direct optical path. Accordingly, deep trenches coated with metal were introduced as optical isolation barriers between pixels. This solution, however, was unable to completely prevent the crosstalk. In this paper we present experimental evidence that a significant contribution to crosstalk comes from photons reflected internally at the bottom of the chip. These photons can bypass trenches making them ineffective. We also propose an optical model suitable to predict the dependence of crosstalk on the position within the array.
2007
Proceedings of SPIE Volume 6771, Advanced Photon Counting Techniques II
9780819469311
sezele
File in questo prodotto:
File Dimensione Formato  
2007_OpticsEast-SPIE6771_Rech_OpticalCrossTalk.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/268487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact