Purpose: Climate change, increasing aridity, water scarcity and population growth, enhancing food demand and irrigated land expansion, are expected to increase the extent of salinity-affected areas. This study aims to combine the crop-energy-water balance model FEST-EWB-SAFY with Leaf Area Index (LAI) and Land Surface Temperature (LST) data from remote sensing to monitor maize development in a field with a shallow water table and highly affected by salinity. Methods: The FEST-EWB-SAFY model couples the distributed energy-water balance FEST-EWB model, which computes time-continuous soil moisture and evapotranspiration, and the SAFY crop model for yield prediction. The model was employed in synergy with satellite observations of LST and LAI. LST was used for the calibration/validation of the water and energy balances, whereas LAI was used both for the calibration of crop parameters and a data assimilation scheme. Results: The data assimilation scheme was able to reproduce the observed spatial heterogeneity in crop development, associated to the uneven water table depth and salinity distribution, as these effects were picked up from satellite. A good correspondence was also found between modelled yield and the distributed samplings from a combined harvester equipped with a yield monitor. Conclusion: The results, comparable to those obtained with the a posteriori calibration, show that data assimilation of remote sensing observations allow to improve the model as the agricultural season progresses, including information which is difficult to monitor continuously in-situ.

Salinity stress and water availability inferred from satellite leaf area index assimilated into a water-energy-crop model

Paciolla N.;Corbari C.;
2025-01-01

Abstract

Purpose: Climate change, increasing aridity, water scarcity and population growth, enhancing food demand and irrigated land expansion, are expected to increase the extent of salinity-affected areas. This study aims to combine the crop-energy-water balance model FEST-EWB-SAFY with Leaf Area Index (LAI) and Land Surface Temperature (LST) data from remote sensing to monitor maize development in a field with a shallow water table and highly affected by salinity. Methods: The FEST-EWB-SAFY model couples the distributed energy-water balance FEST-EWB model, which computes time-continuous soil moisture and evapotranspiration, and the SAFY crop model for yield prediction. The model was employed in synergy with satellite observations of LST and LAI. LST was used for the calibration/validation of the water and energy balances, whereas LAI was used both for the calibration of crop parameters and a data assimilation scheme. Results: The data assimilation scheme was able to reproduce the observed spatial heterogeneity in crop development, associated to the uneven water table depth and salinity distribution, as these effects were picked up from satellite. A good correspondence was also found between modelled yield and the distributed samplings from a combined harvester equipped with a yield monitor. Conclusion: The results, comparable to those obtained with the a posteriori calibration, show that data assimilation of remote sensing observations allow to improve the model as the agricultural season progresses, including information which is difficult to monitor continuously in-situ.
2025
Agro-hydrological modelling
Data assimilation
Remote sensing
Salinity
Water scarcity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1302650
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact