Ensuring the safety and reliability of freight wagons requires continuous monitoring of couplings such as hooks and buffers, which are prone to stress, wear, and misalignments. This paper proposes a vision-based 3D monitoring system which uses an RGB-D camera and a computer vision pipeline to estimate angular excursions and longitudinal displacements of wagon couplers during train operation. The proposed approach combines depth-based reconstruction with a normalized cross-correlation tracking algorithm, providing geometric measurements of coupling motion without physical contact. The system architecture integrates real-time acquisition and post-processing analysis to 3D reconstruct the geometric characteristics of wagon couplings under field conditions. Experimental tests performed on a T3000 articulated wagon allowed us to measure an angular excursion of approximately 9.8° for the hook and a longitudinal displacement of 17 mm for the buffer. The results show robustness and suitability for embedded implementation, supporting the adoption of vision-based techniques for safety monitoring in railways.

Development and Experimental Testing of a 3D Vision System for Railway Freight Wagon Monitoring

Lanzillo, Laurens;Mazzeo, Francesco;
2025-01-01

Abstract

Ensuring the safety and reliability of freight wagons requires continuous monitoring of couplings such as hooks and buffers, which are prone to stress, wear, and misalignments. This paper proposes a vision-based 3D monitoring system which uses an RGB-D camera and a computer vision pipeline to estimate angular excursions and longitudinal displacements of wagon couplers during train operation. The proposed approach combines depth-based reconstruction with a normalized cross-correlation tracking algorithm, providing geometric measurements of coupling motion without physical contact. The system architecture integrates real-time acquisition and post-processing analysis to 3D reconstruct the geometric characteristics of wagon couplings under field conditions. Experimental tests performed on a T3000 articulated wagon allowed us to measure an angular excursion of approximately 9.8° for the hook and a longitudinal displacement of 17 mm for the buffer. The results show robustness and suitability for embedded implementation, supporting the adoption of vision-based techniques for safety monitoring in railways.
2025
computer vision; coupler (hook–buffer) monitoring; railway freight wagons; RGB-D sensing; structural health monitoring; template matching-based tracking;
computer vision
coupler (hook–buffer) monitoring
railway freight wagons
RGB-D sensing
structural health monitoring
template matching-based tracking
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1301985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact