In the context of sustainable development, the concept of active mobility plays a key role in modern urban areas. To evaluate active mobility in these areas, we formulate a framework for characterising active mobility by calculating street network indices using global, free, and open data. This framework comprises the download and processing of pedestrian, cycling, driving, and public transport street networks from OpenStreetMap, the selection of street network indices from the academic literature, and their implementation and calculation. A total of 50 indicators are reported for each urban area distributed in eight index types, including thematic variables, proximity to Points of Interest (POIs), proximity to public transport, intersection density, street density, street length, link–node ratio, circuity, slope, and orientation entropy. To test the framework, we calculate street network indices for pedestrian and cycling networks for the urban areas of 176 cities from around the world. The resulting dataset is published as open data. An analysis of the calculated indices indicates that cities in higher-income economies generally exhibit better conditions for active mobility, especially in Europe, attributed to better map completeness, and to more compact and connected urban areas where it is easier to access amenities and public transport.
Characterising Active Mobility in Urban Areas Through Street Network Indices
Duque Ordoñez, Juan Pablo;Brovelli, Maria Antonia
2025-01-01
Abstract
In the context of sustainable development, the concept of active mobility plays a key role in modern urban areas. To evaluate active mobility in these areas, we formulate a framework for characterising active mobility by calculating street network indices using global, free, and open data. This framework comprises the download and processing of pedestrian, cycling, driving, and public transport street networks from OpenStreetMap, the selection of street network indices from the academic literature, and their implementation and calculation. A total of 50 indicators are reported for each urban area distributed in eight index types, including thematic variables, proximity to Points of Interest (POIs), proximity to public transport, intersection density, street density, street length, link–node ratio, circuity, slope, and orientation entropy. To test the framework, we calculate street network indices for pedestrian and cycling networks for the urban areas of 176 cities from around the world. The resulting dataset is published as open data. An analysis of the calculated indices indicates that cities in higher-income economies generally exhibit better conditions for active mobility, especially in Europe, attributed to better map completeness, and to more compact and connected urban areas where it is easier to access amenities and public transport.| File | Dimensione | Formato | |
|---|---|---|---|
|
ijgi-14-00447 (1).pdf
accesso aperto
Descrizione: Full paper
:
Publisher’s version
Dimensione
14.16 MB
Formato
Adobe PDF
|
14.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


