Driven by environmental concerns and aligned with the principles of the circular economy, urban plastic waste—including packaging materials, disposable items, non-functional objects, and industrial scrap—is increasingly being collected, recycled, and marketed as a potential substitute for virgin polymers. However, the use of recycled polymers introduces uncertainties that can significantly affect both the durability and the further recyclability of the resulting products. This paper demonstrates how spectroscopic analysis in the mid-infrared (MIR) and near-infrared (NIR) regions can be applied well beyond the basic identification of the main polymeric component, typically performed during the sorting stage of recycling processes. A detailed interpretation of spectral data, based on well-established correlations between spectroscopic response and material structure, enables the classification of recycled polymers according to specific physicochemical properties, such as chemical composition, molecular architecture, and morphology. In this context, infrared spectroscopy not only provides a reliable comparison with the corresponding virgin polymer references but also proves particularly effective in assessing the homogeneity of recycled materials and the reproducibility of their properties—factors not inherently guaranteed due to the variability of input sources. As a case study, we present a robust protocol for determining the polypropylene content in recycled polyethylene samples.

IR Spectroscopy as a Diagnostic Tool in the Recycling Process and Evaluation of Recycled Polymeric Materials

Hu, Kaiyue;Brambilla, Luigi;Castiglioni, Chiara
2025-01-01

Abstract

Driven by environmental concerns and aligned with the principles of the circular economy, urban plastic waste—including packaging materials, disposable items, non-functional objects, and industrial scrap—is increasingly being collected, recycled, and marketed as a potential substitute for virgin polymers. However, the use of recycled polymers introduces uncertainties that can significantly affect both the durability and the further recyclability of the resulting products. This paper demonstrates how spectroscopic analysis in the mid-infrared (MIR) and near-infrared (NIR) regions can be applied well beyond the basic identification of the main polymeric component, typically performed during the sorting stage of recycling processes. A detailed interpretation of spectral data, based on well-established correlations between spectroscopic response and material structure, enables the classification of recycled polymers according to specific physicochemical properties, such as chemical composition, molecular architecture, and morphology. In this context, infrared spectroscopy not only provides a reliable comparison with the corresponding virgin polymer references but also proves particularly effective in assessing the homogeneity of recycled materials and the reproducibility of their properties—factors not inherently guaranteed due to the variability of input sources. As a case study, we present a robust protocol for determining the polypropylene content in recycled polyethylene samples.
2025
chemical recognition
plastic waste
polymer morphology
polymers sorting
secondary raw materials
structural characterization
File in questo prodotto:
File Dimensione Formato  
sensors-25-06205 (1).pdf

accesso aperto

Descrizione: manoscritto
: Publisher’s version
Dimensione 3.52 MB
Formato Adobe PDF
3.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1301256
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact