Evaluating sidewalk accessibility is conventionally a manual and time-consuming task that requires specialized personnel. While recent developments in Visual AI have paved the way for automating data analysis, the lack of sidewalk accessibility datasets remains a significant challenge. This study presents the design and validation of Sidewalk AI Scanner, a web app that enables quick, crowdsourced and low-cost sidewalk mapping. The app enables a participatory approach to data collection through imagery captured using smartphone cameras. Subsequently, dedicated algorithms automatically identify sidewalk features such as width, obstacles or pavement conditions. Though not a replacement for high-resolution sensing methods, this method leverages data crowdsourcing as a strategy to produce a highly scalable, city-level dataset of sidewalk accessibility, offering a novel perspective on the city's inclusivity; fostering community empowerment and participatory planning.This article is part of the theme issue 'Co-creating the future: participatory cities and digital governance'.

Mapping sidewalks accessibility with smartphone imagery and visual AI: a participatory approach

Diego Morra;Simone Mora;Carlo Ratti
2024-01-01

Abstract

Evaluating sidewalk accessibility is conventionally a manual and time-consuming task that requires specialized personnel. While recent developments in Visual AI have paved the way for automating data analysis, the lack of sidewalk accessibility datasets remains a significant challenge. This study presents the design and validation of Sidewalk AI Scanner, a web app that enables quick, crowdsourced and low-cost sidewalk mapping. The app enables a participatory approach to data collection through imagery captured using smartphone cameras. Subsequently, dedicated algorithms automatically identify sidewalk features such as width, obstacles or pavement conditions. Though not a replacement for high-resolution sensing methods, this method leverages data crowdsourcing as a strategy to produce a highly scalable, city-level dataset of sidewalk accessibility, offering a novel perspective on the city's inclusivity; fostering community empowerment and participatory planning.This article is part of the theme issue 'Co-creating the future: participatory cities and digital governance'.
File in questo prodotto:
File Dimensione Formato  
20241110_Morra-etal_MappingSidewalks_RoyalSociety.pdf

Accesso riservato

Dimensione 6.59 MB
Formato Adobe PDF
6.59 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1300155
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact