Deep learning (DL) methods are increasingly applied to address the low signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of low-field MRI (LFMRI). This study evaluates the potential of diffusion models for LFMRI enhancement, comparing the Super-resolution via Repeated Refinement (SR3), a generative diffusion model, to traditional architectures such as CycleGAN and UNet for translating LFMRI to high-field MRI (HFMRI). Using synthetic LFMRI (64mT) FLAIR brain images generated from the BraTS 2019 dataset (3T), the models were assessed with traditional metrics, including structural similarity index (SSIM) and normalized root-mean-squared error (nRMSE), alongside specialized structural error measurements such as gradient entropy (gEn), gradient error (GE), and perception-based image quality evaluator (PIQE). SR3 significantly outperformed (p-value < < 0.05) the other models across all metrics, achieving SSIM scores over 0.97 and excelling in preserving pathological structures su...
In-silico comparison of a diffusion model with conventionally trained deep networks for translating 64mT to 3T brain FLAIR
Tsiamyrtzis, Panagiotis;
2025-01-01
Abstract
Deep learning (DL) methods are increasingly applied to address the low signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of low-field MRI (LFMRI). This study evaluates the potential of diffusion models for LFMRI enhancement, comparing the Super-resolution via Repeated Refinement (SR3), a generative diffusion model, to traditional architectures such as CycleGAN and UNet for translating LFMRI to high-field MRI (HFMRI). Using synthetic LFMRI (64mT) FLAIR brain images generated from the BraTS 2019 dataset (3T), the models were assessed with traditional metrics, including structural similarity index (SSIM) and normalized root-mean-squared error (nRMSE), alongside specialized structural error measurements such as gradient entropy (gEn), gradient error (GE), and perception-based image quality evaluator (PIQE). SR3 significantly outperformed (p-value < < 0.05) the other models across all metrics, achieving SSIM scores over 0.97 and excelling in preserving pathological structures su...| File | Dimensione | Formato | |
|---|---|---|---|
|
In-silico comparison of a diffusion model with conventionally trained deep networks for translating 64mT to 3T brain FLAIR.pdf
accesso aperto
:
Publisher’s version
Dimensione
5.41 MB
Formato
Adobe PDF
|
5.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


