We consider a class of Hamiltonian Klein–Gordon equations with a quasilinear, quadratic nonlinearity under periodic boundary conditions. For a large set of masses, we provide a precise description of the dynamics for an open set of small initial data of size ε showing that the corresponding solutions remain close to oscillatory motions over a time scale ε-94+δ for any δ>0. The key ingredients of the proof are normal form methods, para-differential calculus and a modified energy approach.

Long Time Dynamics of Quasi-linear Hamiltonian Klein–Gordon Equations on the Circle

Giuliani, Filippo
2025-01-01

Abstract

We consider a class of Hamiltonian Klein–Gordon equations with a quasilinear, quadratic nonlinearity under periodic boundary conditions. For a large set of masses, we provide a precise description of the dynamics for an open set of small initial data of size ε showing that the corresponding solutions remain close to oscillatory motions over a time scale ε-94+δ for any δ>0. The key ingredients of the proof are normal form methods, para-differential calculus and a modified energy approach.
2025
Long time approximation
Long time dynamics
Normal forms
Quasilinear Klein–Gordon
File in questo prodotto:
File Dimensione Formato  
Feola_Giuliani_JDDE.pdf

accesso aperto

: Publisher’s version
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1299042
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact