We investigate nonexistence of nontrivial nonnegative solutions to a class of semilinear parabolic equations with a positive potential, posed on weighted graphs. Assuming an upper bound on the Laplacian of the distance and a suitable weighted space-time volume growth condition, we show that no global solutions exist. We also discuss the optimality of the hypotheses, thus recovering a critical exponent phenomenon of Fujita type.

Nonexistence of solutions to parabolic problems with a potential on weighted graphs

Monticelli, Dario D.;Punzo, Fabio;Somaglia, Jacopo
2026-01-01

Abstract

We investigate nonexistence of nontrivial nonnegative solutions to a class of semilinear parabolic equations with a positive potential, posed on weighted graphs. Assuming an upper bound on the Laplacian of the distance and a suitable weighted space-time volume growth condition, we show that no global solutions exist. We also discuss the optimality of the hypotheses, thus recovering a critical exponent phenomenon of Fujita type.
2026
Distance function
Graphs
Nonexistence of global solutions
Semilinear parabolic equations on graphs
Test functions
Weighted volume
File in questo prodotto:
File Dimensione Formato  
Monticelli, Punzo, Somaglia - Nonexistence of solutions to parabolic problems with a potential on weghted graphs.pdf

Accesso riservato

: Publisher’s version
Dimensione 706.82 kB
Formato Adobe PDF
706.82 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1299027
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact