The conversion of bio-based molecules into valuable chemicals is essential for advancing sustainable processes and addressing global resource challenges. However, conventional catalytic methods often demand harsh conditions and suffer from low product selectivity. This study introduces a series of bifunctional PdxPty catalysts supported on TiO2, designed for achieving selective and mild-temperature catalysis in biomass conversion. Synthesized via a sol immobilization method and characterized by XRF, N2 physisorption, HRTEM, HAADF-STEM, and XPS, these catalysts demonstrate superior selectivity and activity over monometallic counterparts. In fact, at 20 bar H2, Pt/TiO2 show a low selectivity in benzophenone hydrodeoxygenation, favoring the benzhydrol hydrogenation product; similarly, Pd/TiO2 preferentially form the diphenylmethane hydrodeoxygenation (HDO) product, but with slow conversion rates. The synergistic combination of the two metals in Pd4Pt1/TiO2 drastically improve performance, with 100 % benzophenone conversion and 73 % diphenylmethane selectivity. DFT calculations confirm the synergy between Pd and Pt as the key to drive the activity and selectivity. Additionally, the catalysts also demonstrate high recyclability with minimal performance loss, and have been generalized for the HDO of vanillin and furfural, and in HMF oxidation. Overall, this work highlights the potential of bimetallic catalysts in enabling efficient and selective bio-based molecule conversion under mild conditions.

Bifunctional Pd-Pt Supported Nanoparticles for the Mild Hydrodeoxygenation and Oxidation of Biomass-Derived Compounds

Vile G.
2025-01-01

Abstract

The conversion of bio-based molecules into valuable chemicals is essential for advancing sustainable processes and addressing global resource challenges. However, conventional catalytic methods often demand harsh conditions and suffer from low product selectivity. This study introduces a series of bifunctional PdxPty catalysts supported on TiO2, designed for achieving selective and mild-temperature catalysis in biomass conversion. Synthesized via a sol immobilization method and characterized by XRF, N2 physisorption, HRTEM, HAADF-STEM, and XPS, these catalysts demonstrate superior selectivity and activity over monometallic counterparts. In fact, at 20 bar H2, Pt/TiO2 show a low selectivity in benzophenone hydrodeoxygenation, favoring the benzhydrol hydrogenation product; similarly, Pd/TiO2 preferentially form the diphenylmethane hydrodeoxygenation (HDO) product, but with slow conversion rates. The synergistic combination of the two metals in Pd4Pt1/TiO2 drastically improve performance, with 100 % benzophenone conversion and 73 % diphenylmethane selectivity. DFT calculations confirm the synergy between Pd and Pt as the key to drive the activity and selectivity. Additionally, the catalysts also demonstrate high recyclability with minimal performance loss, and have been generalized for the HDO of vanillin and furfural, and in HMF oxidation. Overall, this work highlights the potential of bimetallic catalysts in enabling efficient and selective bio-based molecule conversion under mild conditions.
2025
Bimetallic nanoparticles
biomass conversion
catalyst design
heterogeneous catalysis
hydrodeoxygenation reactions
File in questo prodotto:
File Dimensione Formato  
ChemSusChem - 2025 - Ruta - Bifunctional Pd‐Pt Supported Nanoparticles for the Mild Hydrodeoxygenation and Oxidation of.pdf

accesso aperto

: Publisher’s version
Dimensione 4.72 MB
Formato Adobe PDF
4.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1297945
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact