Given the fast-evolving context of electrical vertical takeoff and landing vehicles (eVTOL) based on the concept of tiltrotor aircraft, this work describes a framework aimed at the preliminary aerodynamic design and optimization of innovative lifting surfaces of such rotorcraft vehicles. In particular, a multiobjective optimization process was applied to the design of a wing extension representing an innovative feature recently investigated to improve the aerodynamic performance of a tiltrotor aircraft wing. The wing/proprotor configurations, selected using a Design Of Experiment (DOE) approach, were simulated by the mid-fidelity aerodynamic code DUST, which used a vortex-particle method (VPM) approach to model the wing/rotor wakes. A linear regression model accounting for nonlinear interactions was used by an evolutionary algorithm within a multiobjective optimization framework, which provided a set of Pareto-optimal solutions for the wing extension, maximizing both wing and rotor efficiency. Moreover, the present work highlighted how the use of a fast and reliable numerical modeling for aerodynamics, such as the VPM approach, enhanced the capabilities of an optimization framework aimed at achieving a more accurate preliminary design of innovative features for rotorcraft configurations while taking into account the effects of the aerodynamic interaction between wings and proprotors.

Multi-Fidelity Aerodynamic Optimization of the Wing Extension of a Tiltrotor Aircraft

Savino, Alberto
2025-01-01

Abstract

Given the fast-evolving context of electrical vertical takeoff and landing vehicles (eVTOL) based on the concept of tiltrotor aircraft, this work describes a framework aimed at the preliminary aerodynamic design and optimization of innovative lifting surfaces of such rotorcraft vehicles. In particular, a multiobjective optimization process was applied to the design of a wing extension representing an innovative feature recently investigated to improve the aerodynamic performance of a tiltrotor aircraft wing. The wing/proprotor configurations, selected using a Design Of Experiment (DOE) approach, were simulated by the mid-fidelity aerodynamic code DUST, which used a vortex-particle method (VPM) approach to model the wing/rotor wakes. A linear regression model accounting for nonlinear interactions was used by an evolutionary algorithm within a multiobjective optimization framework, which provided a set of Pareto-optimal solutions for the wing extension, maximizing both wing and rotor efficiency. Moreover, the present work highlighted how the use of a fast and reliable numerical modeling for aerodynamics, such as the VPM approach, enhanced the capabilities of an optimization framework aimed at achieving a more accurate preliminary design of innovative features for rotorcraft configurations while taking into account the effects of the aerodynamic interaction between wings and proprotors.
2025
Design Of Experiment
multiobjective optimization
tiltrotor
vortex particle method
wing extension
File in questo prodotto:
File Dimensione Formato  
SAVIA04-25.pdf

accesso aperto

: Publisher’s version
Dimensione 5.76 MB
Formato Adobe PDF
5.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1297770
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact