Spinal cord injury (SCI) disrupts neuromuscular control, severely affecting independence and quality of life. Although upper limb wearable robots hold considerable promise for functional restoration, most existing prototypes have been validated minimally in people with SCI and target almost exclusively hand opening and closing. We introduce a lightweight, modular assistive soft exosuit that simultaneously and automatically supports shoulder abduction and elbow flexion or extension movements using lightweight fabric-based pneumatic actuators, controlled through inertial sensors. The individual elbow modules were first validated in 11 healthy volunteers, and subsequently tested, together with the shoulder module, in 15 individuals with cervical SCI (C4–C7, AIS A–D). In the SCI participants, exosuits assistance resulted in increased static endurance time (by more than 250%), and lower activity of the primary muscles involved in dynamic tasks (by up to 50%). The two SCI participants retaining prehensile capability also improved their scores in the box and block test when assisted. Moreover, the soft actuation provided a safe, comfortable and easy-to-use solution that was positively appreciated by the participants. Collectively, these results provide encouraging evidence that exosuits can augment upper limb motor performance, and may ultimately translate into greater functional independence and quality of life for the SCI population.
A multi-joint soft exosuit improves shoulder and elbow motor functions in individuals with spinal cord injury
Gandolla, Marta;
2025-01-01
Abstract
Spinal cord injury (SCI) disrupts neuromuscular control, severely affecting independence and quality of life. Although upper limb wearable robots hold considerable promise for functional restoration, most existing prototypes have been validated minimally in people with SCI and target almost exclusively hand opening and closing. We introduce a lightweight, modular assistive soft exosuit that simultaneously and automatically supports shoulder abduction and elbow flexion or extension movements using lightweight fabric-based pneumatic actuators, controlled through inertial sensors. The individual elbow modules were first validated in 11 healthy volunteers, and subsequently tested, together with the shoulder module, in 15 individuals with cervical SCI (C4–C7, AIS A–D). In the SCI participants, exosuits assistance resulted in increased static endurance time (by more than 250%), and lower activity of the primary muscles involved in dynamic tasks (by up to 50%). The two SCI participants retaining prehensile capability also improved their scores in the box and block test when assisted. Moreover, the soft actuation provided a safe, comfortable and easy-to-use solution that was positively appreciated by the participants. Collectively, these results provide encouraging evidence that exosuits can augment upper limb motor performance, and may ultimately translate into greater functional independence and quality of life for the SCI population.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


