Numerical simulations and clinical measurements of nasal resistance are in quantitative disagreement. The order of magnitude of this mismatch, that sometimes exceeds 100%, is such that known sources of uncertainty cannot explain it. The goal of the present work is to examine a source of bias introduced by the design of medical devices, which has not been considered until now as a possible explanation. We study the effect of the location of the probe on the rhinomanometer that is meant to measure the ambient pressure. Rhinomanometry is carried out on a 3D silicone model of a patient-specific anatomy; a clinical device and dedicated sensors are employed side-by-side for mutual validation. The same anatomy is also employed for numerical simulations, with approaches spanning a wide range of fidelity levels. We find that the intrinsic uncertainty of the numerical simulations is of minor importance. To the contrary, the position of the pressure tap intended to acquire the external pressure in the clinical device is crucial, and can cause a mismatch comparable to that generally observed between in-silico and in-vivo rhinomanometry data. A source of systematic bias may therefore exist in rhinomanometers, designed under the assumption that measurements of the nasal resistance are unaffected by the flow development within the instruments.

Understanding the mismatch between in-vivo and in-silico rhinomanometry

Atzori, Marco;Quadrio, Maurizio
2025-01-01

Abstract

Numerical simulations and clinical measurements of nasal resistance are in quantitative disagreement. The order of magnitude of this mismatch, that sometimes exceeds 100%, is such that known sources of uncertainty cannot explain it. The goal of the present work is to examine a source of bias introduced by the design of medical devices, which has not been considered until now as a possible explanation. We study the effect of the location of the probe on the rhinomanometer that is meant to measure the ambient pressure. Rhinomanometry is carried out on a 3D silicone model of a patient-specific anatomy; a clinical device and dedicated sensors are employed side-by-side for mutual validation. The same anatomy is also employed for numerical simulations, with approaches spanning a wide range of fidelity levels. We find that the intrinsic uncertainty of the numerical simulations is of minor importance. To the contrary, the position of the pressure tap intended to acquire the external pressure in the clinical device is crucial, and can cause a mismatch comparable to that generally observed between in-silico and in-vivo rhinomanometry data. A source of systematic bias may therefore exist in rhinomanometers, designed under the assumption that measurements of the nasal resistance are unaffected by the flow development within the instruments.
2025
Computational fluid dynamics
Nasal obstruction
Nasal resistance
Rhinomanometry
File in questo prodotto:
File Dimensione Formato  
ATZOM01-25.pdf

accesso aperto

: Publisher’s version
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1297291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact