This study presents a simple, efficient approach for the CFD simulation of turbulent pipe transport of shear-thinning, power-law fluids. The method is developed within the Newtonian-based Reynolds-Averaged Navier-Stokes (RANS) framework, and it relies on a modification to the Reynolds-averaged apparent viscosity function to compensate for errors induced by the non-decomposition of the instantaneous apparent viscosity, as well as for the use of turbulence models developed for Newtonian fluids. Specifically, the Reynolds-averaged apparent viscosity switches from a power law to a logarithmic function for averaged shear rates below a threshold value, called the “critical shear rate”, which becomes a calibration parameter of the model. The new framework was tested against DNS data reported in the literature for different pipe-flow conditions, covering combinations of flow index n={1.0,0.8,0.6} and friction Reynolds number Reτ={323,500,750}, as well as against well-established correlations for the friction factor, with the analysis extended to cases up to n=0.4 and Reτ=2,500. The analysis was conducted by employing three different turbulence models, namely Lam-Bremhorst k-ε, two-layer k-ε, and k-ω SST, which all rely on a low-Reynolds number treatment to obtain a detailed flow description in the near-wall region. The proposed approach appears attractive from an engineering standpoint, as it allows obtaining reasonably accurate prediction of main features of turbulent pipe transport of shear-thinning, power-law fluids, with a simple mathematical formulation and a robust and easy-to-converge character that can make a difference for the application to more complex flows.

A simple approach for effective CFD simulation of turbulent pipe transport of shear-thinning, power-law fluids

Soto, J. I.;Messa, G. V.;
2025-01-01

Abstract

This study presents a simple, efficient approach for the CFD simulation of turbulent pipe transport of shear-thinning, power-law fluids. The method is developed within the Newtonian-based Reynolds-Averaged Navier-Stokes (RANS) framework, and it relies on a modification to the Reynolds-averaged apparent viscosity function to compensate for errors induced by the non-decomposition of the instantaneous apparent viscosity, as well as for the use of turbulence models developed for Newtonian fluids. Specifically, the Reynolds-averaged apparent viscosity switches from a power law to a logarithmic function for averaged shear rates below a threshold value, called the “critical shear rate”, which becomes a calibration parameter of the model. The new framework was tested against DNS data reported in the literature for different pipe-flow conditions, covering combinations of flow index n={1.0,0.8,0.6} and friction Reynolds number Reτ={323,500,750}, as well as against well-established correlations for the friction factor, with the analysis extended to cases up to n=0.4 and Reτ=2,500. The analysis was conducted by employing three different turbulence models, namely Lam-Bremhorst k-ε, two-layer k-ε, and k-ω SST, which all rely on a low-Reynolds number treatment to obtain a detailed flow description in the near-wall region. The proposed approach appears attractive from an engineering standpoint, as it allows obtaining reasonably accurate prediction of main features of turbulent pipe transport of shear-thinning, power-law fluids, with a simple mathematical formulation and a robust and easy-to-converge character that can make a difference for the application to more complex flows.
2025
CFD
Low-Reynolds number turbulence model
Pipe-flow
Power-law
Shear-thinning
Turbulent flow
File in questo prodotto:
File Dimensione Formato  
SotoEtAl_AMM26.pdf

accesso aperto

Descrizione: Publisher's version
: Publisher’s version
Dimensione 4 MB
Formato Adobe PDF
4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1296768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact