The increasing integration of renewable energy sources (RESs) is transforming traditional power grid networks, which require new approaches for managing decentralized energy production and consumption. Microgrids (MGs) provide a promising solution by enabling localized control over energy generation, storage, and distribution. This paper presents a novel reinforcement learning (RL)-based methodology for optimizing microgrid energy management. Specifically, we propose an RL agent that learns optimal energy trading and storage policies by leveraging historical data on energy production, consumption, and market prices. A digital twin (DT) is used to simulate the energy storage system dynamics, incorporating degradation factors to ensure a realistic emulation of the analysed setting. Our approach is validated through an experimental campaign using real-world data from a power grid located in the Italian territory. The results indicate that the proposed RL-based strategy outperforms rule-based methods and existing RL benchmarks, offering a robust solution for intelligent microgrid management.

A reinforcement learning approach for optimal control in microgrids

D. Salaorni;M. Restelli;F. Trovo'
2025-01-01

Abstract

The increasing integration of renewable energy sources (RESs) is transforming traditional power grid networks, which require new approaches for managing decentralized energy production and consumption. Microgrids (MGs) provide a promising solution by enabling localized control over energy generation, storage, and distribution. This paper presents a novel reinforcement learning (RL)-based methodology for optimizing microgrid energy management. Specifically, we propose an RL agent that learns optimal energy trading and storage policies by leveraging historical data on energy production, consumption, and market prices. A digital twin (DT) is used to simulate the energy storage system dynamics, incorporating degradation factors to ensure a realistic emulation of the analysed setting. Our approach is validated through an experimental campaign using real-world data from a power grid located in the Italian territory. The results indicate that the proposed RL-based strategy outperforms rule-based methods and existing RL benchmarks, offering a robust solution for intelligent microgrid management.
2025
Proceedings of the International Joint Conference on Neural Networks (IJCNN) 2025
File in questo prodotto:
File Dimensione Formato  
IJCNN25_camera_ready_main.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 610.29 kB
Formato Adobe PDF
610.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1295842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact