Rapid urbanization has intensified the systemic inequities of resources and infrastructure distribution in informal settlements, particularly in the Global South. Digital Twin Modeling (DTM), as an effective data-driven representation, enables real-time analysis, scenario simulation, and design optimization, making it a promising tool to support urban resilience. This study introduces the Integrated Modification Methodology (IMM), developed by Politecnico di Milano (Italy), to explore how DTM can be systematically structured and transformed into an active instrument, linking theories with practical application. Focusing on Paranoá (Brasília), a case study developed under the NBSouth project in collaboration with the Politecnico di Milano and the University of Brasília, this research integrates advanced spatial mapping with comprehensive key performance indicators (KPIs) analysis to address developmental and environmental challenges during the regeneration process. Key metrics—Green Space Diversity, Ecosystem Service Proximity, and Green Space Continuity—were analyzed by a Geographic Information System (GIS) platform on 30 m by 30 m sampling grids. Additional KPIs across urban structural, environmental, and mobility layers were calculated to support the decision-making process for strategic mapping. This study contributes to theoretical advancements in DTM and broader discourse on urban regeneration under climate stress, offering a systemic and practical approach for multi-dimensional digitalization of urban structure and performance, supporting a more adaptive, data-based, and transferable planning process in the Global South.
Digital Twin-Assisted Urban Resilience: A Data-Driven Framework for Sustainable Regeneration in Paranoá, Brasilia
Tao Dong;Massimo Tadi
2025-01-01
Abstract
Rapid urbanization has intensified the systemic inequities of resources and infrastructure distribution in informal settlements, particularly in the Global South. Digital Twin Modeling (DTM), as an effective data-driven representation, enables real-time analysis, scenario simulation, and design optimization, making it a promising tool to support urban resilience. This study introduces the Integrated Modification Methodology (IMM), developed by Politecnico di Milano (Italy), to explore how DTM can be systematically structured and transformed into an active instrument, linking theories with practical application. Focusing on Paranoá (Brasília), a case study developed under the NBSouth project in collaboration with the Politecnico di Milano and the University of Brasília, this research integrates advanced spatial mapping with comprehensive key performance indicators (KPIs) analysis to address developmental and environmental challenges during the regeneration process. Key metrics—Green Space Diversity, Ecosystem Service Proximity, and Green Space Continuity—were analyzed by a Geographic Information System (GIS) platform on 30 m by 30 m sampling grids. Additional KPIs across urban structural, environmental, and mobility layers were calculated to support the decision-making process for strategic mapping. This study contributes to theoretical advancements in DTM and broader discourse on urban regeneration under climate stress, offering a systemic and practical approach for multi-dimensional digitalization of urban structure and performance, supporting a more adaptive, data-based, and transferable planning process in the Global South.| File | Dimensione | Formato | |
|---|---|---|---|
|
urbansci-09-00333-v2.pdf
accesso aperto
Descrizione: articolo
:
Publisher’s version
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


