Thiol-epoxy ring opening is a highly efficient and versatile click reaction for postpolymerization modification, ideal for the conjugation of sulfhydryl-containing biomolecules. This study investigated the reactivity of thiols, disulfides, and amines toward glycidyl-bearing polymers, aiming to optimize thiol conjugation using tris(2-carboxyethyl)phosphine (TCEP) as a disulfide-reducing agent. Epoxide groups were introduced via glycidyl methacrylate (GMA) polymerized by ATRP to yield PGMA homopolymers and poly(ε-caprolactone) (PCL)-based block copolymers.1H NMR confirmed quantitative thiol functionalization, while amines showed poor reactivity. l-cysteine conjugation further demonstrated the reaction’s chemoselectivity. Thioglycerol conjugation yielded poly(2-hydroxy-3-(thioglycerol)propyl methacrylate) (PTGMA), a highly hydroxylated PEG alternative. Functionalization was extended to PCL-b-PGMA and PEGMA-based copolymers, forming amphiphilic nanoparticles via nanoprecipitation. Sequential modification with thioglycerol and the cRGD peptide yielded bioactive, size-controlled nanocarriers. Overall, a robust strategy has emerged for synthesizing multifunctional polymeric nanomaterials. Its compatibility with equimolar reactants under ambient conditions makes it particularly suited for the efficient incorporation of sensitive, high-value biomolecules into targeted drug delivery systems.

TCEP-Enabled Click Modification of Glycidyl-Bearing Polymers with Biorelevant Sulfhydryl Molecules: Toward Chemoselective Bioconjugation Strategies

Porello, Ilaria;Stucchi, Federico;Cellesi, Francesco
2025-01-01

Abstract

Thiol-epoxy ring opening is a highly efficient and versatile click reaction for postpolymerization modification, ideal for the conjugation of sulfhydryl-containing biomolecules. This study investigated the reactivity of thiols, disulfides, and amines toward glycidyl-bearing polymers, aiming to optimize thiol conjugation using tris(2-carboxyethyl)phosphine (TCEP) as a disulfide-reducing agent. Epoxide groups were introduced via glycidyl methacrylate (GMA) polymerized by ATRP to yield PGMA homopolymers and poly(ε-caprolactone) (PCL)-based block copolymers.1H NMR confirmed quantitative thiol functionalization, while amines showed poor reactivity. l-cysteine conjugation further demonstrated the reaction’s chemoselectivity. Thioglycerol conjugation yielded poly(2-hydroxy-3-(thioglycerol)propyl methacrylate) (PTGMA), a highly hydroxylated PEG alternative. Functionalization was extended to PCL-b-PGMA and PEGMA-based copolymers, forming amphiphilic nanoparticles via nanoprecipitation. Sequential modification with thioglycerol and the cRGD peptide yielded bioactive, size-controlled nanocarriers. Overall, a robust strategy has emerged for synthesizing multifunctional polymeric nanomaterials. Its compatibility with equimolar reactants under ambient conditions makes it particularly suited for the efficient incorporation of sensitive, high-value biomolecules into targeted drug delivery systems.
2025
File in questo prodotto:
File Dimensione Formato  
porello-et-al-2025-tcep-enabled-click-modification-of-glycidyl-bearing-polymers-with-biorelevant-sulfhydryl-molecules.pdf

accesso aperto

: Publisher’s version
Dimensione 7.07 MB
Formato Adobe PDF
7.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1295440
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact