3D printing is emerging as a promising fabrication technique for microfluidic devices. In this work, this technology was exploited in the development of a microfluidic chromatographic column with nominal volume of 54 µL. The microcolumn was packed with a cation exchange resin and characterized, using potassium iodide as a tracer, in terms of porosity (ε = 0.72), plate number, and asymmetry factor (0.8 < AS < 1.8 for flowrates >50 µL/min). To showcase the potential of this microdevice, it was exploited in the characterization of the chromatographic behavior of lysozyme. The measured saturation capacity (q∞= 88.14 g/Lresin at 340 cm/h) was in line with the manufacturer declaration (85–135 g/L at <500 cm/h). In addition, the effect of NaCl at different concentrations on the protein adsorption isotherm was characterized, demonstrating a Langmuir to anti-Langmuir transition at concentrations ≥300 mM. The axial dispersion coefficient was finally determined ((Formula presented.) = 6.7 · 10−9 m2/s). In this way, the mcirofluidic column allowed to develop a comprehensive mechanistic model describing the transport of lysozyme in the chromatographic medium using only 30 µL of resin and <1 g of protein, addressing the issue of limited availability of biomolecules and streamlining the process development.

3D Printed Microfluidic Chromatographic Column for Fast Downstream Processing Development

Matining, Vladimir;Messina, Mario;Moscatelli, Davide;Sponchioni, Mattia
2025-01-01

Abstract

3D printing is emerging as a promising fabrication technique for microfluidic devices. In this work, this technology was exploited in the development of a microfluidic chromatographic column with nominal volume of 54 µL. The microcolumn was packed with a cation exchange resin and characterized, using potassium iodide as a tracer, in terms of porosity (ε = 0.72), plate number, and asymmetry factor (0.8 < AS < 1.8 for flowrates >50 µL/min). To showcase the potential of this microdevice, it was exploited in the characterization of the chromatographic behavior of lysozyme. The measured saturation capacity (q∞= 88.14 g/Lresin at 340 cm/h) was in line with the manufacturer declaration (85–135 g/L at <500 cm/h). In addition, the effect of NaCl at different concentrations on the protein adsorption isotherm was characterized, demonstrating a Langmuir to anti-Langmuir transition at concentrations ≥300 mM. The axial dispersion coefficient was finally determined ((Formula presented.) = 6.7 · 10−9 m2/s). In this way, the mcirofluidic column allowed to develop a comprehensive mechanistic model describing the transport of lysozyme in the chromatographic medium using only 30 µL of resin and <1 g of protein, addressing the issue of limited availability of biomolecules and streamlining the process development.
2025
3D printing
adsorption equilibrium
chromatography
HETP
high-throughput screening
microfluidics
File in questo prodotto:
File Dimensione Formato  
3D Printed Microfluidic Chromatographic Column for FastDownstream Processing Development.pdf

accesso aperto

: Publisher’s version
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1295226
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact