Background and objectives: In recent years, computational simulations have emerged as valuable tools for the evaluation of atherosclerosis progression in coronary anatomies, although only a few studies have utilized more realistic Fluid-Structure Interaction (FSI) simulations. This work aims to compare the results of Computational Fluid Dynamics (CFD), Structural Finite Element Analysis (structural FEA) and FSI simulations in order to assess differences in plaque progression indices estimation. Methods: We performed structural FEA, CFD and FSI on five patient-specific epicardial coronary anatomies using the commercial software LS-Dyna. To account for the vessel pre-stress, the zero-pressure configuration was calculated for each anatomy with an inverse elastostatic algorithm. CFD, structural FEA and FSI simulations were performed applying boundary conditions based on physiological values. Results: The comparison between structural FEA and FSI showed similar stress distribution and vessel expansions, with differences found only in the distal parts of the coronaries, where pressure reduction due to pressure loss affects the vessel walls. The elastic walls of the coronaries impact blood flow, resulting in a more disturbed flow. However, time averaged wall shear stress (TAWSS) and oscillatory shear index (OSI) distributions are similar across each coronary between CFD and FSI; TAWSS is slightly higher in CFD while OSI peaks are higher in FSI. Conclusion: In conclusion, given the significantly higher computational costs of FSI, we believe that CFD and structural FEA offer a more practical and cost-effective approach, providing results comparable to those of FSI, making them preferable options.

Computational methods used to investigate atherosclerosis progression in coronary arteries: structural FEA, CFD or FSI

Lissoni, Vittorio;Luraghi, Giulia;Stefanati, Marco;Rodriguez Matas, Jose Felix;Migliavacca, Francesco
2025-01-01

Abstract

Background and objectives: In recent years, computational simulations have emerged as valuable tools for the evaluation of atherosclerosis progression in coronary anatomies, although only a few studies have utilized more realistic Fluid-Structure Interaction (FSI) simulations. This work aims to compare the results of Computational Fluid Dynamics (CFD), Structural Finite Element Analysis (structural FEA) and FSI simulations in order to assess differences in plaque progression indices estimation. Methods: We performed structural FEA, CFD and FSI on five patient-specific epicardial coronary anatomies using the commercial software LS-Dyna. To account for the vessel pre-stress, the zero-pressure configuration was calculated for each anatomy with an inverse elastostatic algorithm. CFD, structural FEA and FSI simulations were performed applying boundary conditions based on physiological values. Results: The comparison between structural FEA and FSI showed similar stress distribution and vessel expansions, with differences found only in the distal parts of the coronaries, where pressure reduction due to pressure loss affects the vessel walls. The elastic walls of the coronaries impact blood flow, resulting in a more disturbed flow. However, time averaged wall shear stress (TAWSS) and oscillatory shear index (OSI) distributions are similar across each coronary between CFD and FSI; TAWSS is slightly higher in CFD while OSI peaks are higher in FSI. Conclusion: In conclusion, given the significantly higher computational costs of FSI, we believe that CFD and structural FEA offer a more practical and cost-effective approach, providing results comparable to those of FSI, making them preferable options.
2025
Atherosclerosis
Computational fluid dynamics
Coronary hemodynamics
Coronary simulation runtime
Fluid-structure interaction
Pre-stress
Structural FEA
File in questo prodotto:
File Dimensione Formato  
2025 LISSONI - Computational methods used to investigate coronary arteries.pdf

accesso aperto

: Publisher’s version
Dimensione 6.61 MB
Formato Adobe PDF
6.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1294852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact