Nanogels (NGs) show great potential for innovative therapies due to their capability of reproposing the hydrogels features at the nanoscale. However, conventional batch syntheses exhibit shortcomings that bind the control over the reaction parameters and batch-to-batch reproducibility. Droplet-based microfluidics represents a valuable strategy to overcome these constraints, enabling precise manipulation of fluids/molecules to design nanoscaffolds. Standard microfluidic fabrication methods, such as soft lithography, hot-embossing or molding, require multistep process, and the successful fabrication depends on several factors, including the operator expertise. This work proposes two-photon polymerization (TPP) 3D printing as a straightforward method to produce a microfluidic device for droplet-based synthesis of NGs. The microfluidic platform enables controlled generation of microdroplets (150–80 µm, with size variation up to 47%), which work as microreactors, allowing modulation of NG d...
Droplet-Based Synthesis of Nanogels for Controlled Drug Delivery via Two Photon Polymerization-3D Printed Microfluidic Device
Matining, Vladimir;Colli, Camillo;Jacchetti, Emanuela;Raimondi, Manuela Teresa;Colosimo, Bianca Maria;Mauri, Emanuele;Moscatelli, Davide
2025-01-01
Abstract
Nanogels (NGs) show great potential for innovative therapies due to their capability of reproposing the hydrogels features at the nanoscale. However, conventional batch syntheses exhibit shortcomings that bind the control over the reaction parameters and batch-to-batch reproducibility. Droplet-based microfluidics represents a valuable strategy to overcome these constraints, enabling precise manipulation of fluids/molecules to design nanoscaffolds. Standard microfluidic fabrication methods, such as soft lithography, hot-embossing or molding, require multistep process, and the successful fabrication depends on several factors, including the operator expertise. This work proposes two-photon polymerization (TPP) 3D printing as a straightforward method to produce a microfluidic device for droplet-based synthesis of NGs. The microfluidic platform enables controlled generation of microdroplets (150–80 µm, with size variation up to 47%), which work as microreactors, allowing modulation of NG d...| File | Dimensione | Formato | |
|---|---|---|---|
|
matining et al - Adv Mater Technol.pdf
accesso aperto
:
Publisher’s version
Dimensione
1.88 MB
Formato
Adobe PDF
|
1.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


