For a vector bundle E -> P-l we investigate exceptional sequences of line bundles on the total space of the projectivisation X = P(E). In particular, we consider the case of the cotangent bundle of P-l. If l = 2, we completely classify the (strong) exceptional sequences and show that any maximal exceptional sequence is full. For general l, we prove that the Rouquier dimension of D(X) equals dim X, thereby confirming a conjecture of Orlov.

Exceptional sequences of line bundles on projective bundles

A. Hochenegger;
2025-01-01

Abstract

For a vector bundle E -> P-l we investigate exceptional sequences of line bundles on the total space of the projectivisation X = P(E). In particular, we consider the case of the cotangent bundle of P-l. If l = 2, we completely classify the (strong) exceptional sequences and show that any maximal exceptional sequence is full. For general l, we prove that the Rouquier dimension of D(X) equals dim X, thereby confirming a conjecture of Orlov.
2025
File in questo prodotto:
File Dimensione Formato  
Hochenegger_eprint.pdf

embargo fino al 22/07/2030

Descrizione: Articolo
: Publisher’s version
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1294218
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact