Reliable design and operation of slurry handling systems are critical in industries such as mining. This study examines erosion due to solid particle impacts in a straight pipe section, introducing the concept of “turbulent erosive wear”. Ultrasound particle image velocimetry (UPIV) is used to observe flow at the surface of a ductile target (copper). Experiments are conducted at flow velocities of 1.97 and 2.15 m/s, with particle sizes of 500 and 700 m. Sweep events are identified, and their frequency, intensity, and duration are analysed using wavelet analysis. The results show that velocity impacts of solid particles during sweeps correlate with the geometry of wear scars. Turbulent erosive wear is linked to a characteristic threshold value of impact velocity. This value provides a measurable parameter to enhance predictive modelling and material selection for pipeline design.

Experimental insights into sweep-induced mechanism of erosive wear in a straight pipe section with turbulent slurry flow

Espinoza-Jara, Ariel;Messa, Gianandrea Vittorio;Tedeschi, Cristina
2025-01-01

Abstract

Reliable design and operation of slurry handling systems are critical in industries such as mining. This study examines erosion due to solid particle impacts in a straight pipe section, introducing the concept of “turbulent erosive wear”. Ultrasound particle image velocimetry (UPIV) is used to observe flow at the surface of a ductile target (copper). Experiments are conducted at flow velocities of 1.97 and 2.15 m/s, with particle sizes of 500 and 700 m. Sweep events are identified, and their frequency, intensity, and duration are analysed using wavelet analysis. The results show that velocity impacts of solid particles during sweeps correlate with the geometry of wear scars. Turbulent erosive wear is linked to a characteristic threshold value of impact velocity. This value provides a measurable parameter to enhance predictive modelling and material selection for pipeline design.
2025
Erosive wear, Slurry, Turbulent flow, Ultrasound particle image velocimetry (UPIV)
File in questo prodotto:
File Dimensione Formato  
EspinozaJaraEtAl_WEAR2025.pdf

Accesso riservato

: Publisher’s version
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1293907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact