Slight changes in the local properties of a transmission line, dipped in a liquid, can be used to estimate its level through two different determination techniques, involving the capacitance and electromagnetic wave speed, measured by the time of flight. Indeed, the overall capacitance of a transmission line varies linearly with the liquid level, as well as the time of flight of the electromagnetic wave. Both quantities can be estimated via the measurement of a phase shift at radio frequencies, and the simultaneous measurements can be realized using a compact and low-cost design working at a few megahertz. This paper presents a further improvement in sensitivity to challenge the performance of this kind of level sensor, dealing with liquids with low dielectric constants. To better describe this effect, a study on the overall capacitance of different transmission path segments was conducted in COMSOL Multiphysics. The level measurement was performed experimentally on the realized prototype while considering the measured phase shift as a function of the liquid level, for both an unshielded twisted-pair and magnet wires. As the results showed, with the magnet wires the sensitivity was improved by a factor of about 4, consistently aligning with the simulation results and providing a predictable phase shift response with increasing liquid levels. Consequently, magnet wire is a good choice for precise level measurements through RF phase shifts, especially in the case of low relative permittivity liquids.
Performance Measurement of an Electromagnetic Guided-Wave Liquid Level Sensor
Esmaili, Parisa;Cavedo, Federico;Norgia, Michele
2025-01-01
Abstract
Slight changes in the local properties of a transmission line, dipped in a liquid, can be used to estimate its level through two different determination techniques, involving the capacitance and electromagnetic wave speed, measured by the time of flight. Indeed, the overall capacitance of a transmission line varies linearly with the liquid level, as well as the time of flight of the electromagnetic wave. Both quantities can be estimated via the measurement of a phase shift at radio frequencies, and the simultaneous measurements can be realized using a compact and low-cost design working at a few megahertz. This paper presents a further improvement in sensitivity to challenge the performance of this kind of level sensor, dealing with liquids with low dielectric constants. To better describe this effect, a study on the overall capacitance of different transmission path segments was conducted in COMSOL Multiphysics. The level measurement was performed experimentally on the realized prototype while considering the measured phase shift as a function of the liquid level, for both an unshielded twisted-pair and magnet wires. As the results showed, with the magnet wires the sensitivity was improved by a factor of about 4, consistently aligning with the simulation results and providing a predictable phase shift response with increasing liquid levels. Consequently, magnet wire is a good choice for precise level measurements through RF phase shifts, especially in the case of low relative permittivity liquids.| File | Dimensione | Formato | |
|---|---|---|---|
|
metrology-05-00038.pdf
accesso aperto
:
Publisher’s version
Dimensione
3.54 MB
Formato
Adobe PDF
|
3.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


