The Charpy impact toughness of single-phase austenitic Fe-32Mn-0.6C steel was systematically investigated across a wide temperature spectrum from 25 °C to −196 °C using Charpy V-notch impact tests. The material exhibited a remarkable temperature dependence of impact energy, decreasing dramatically from 120 J at ambient temperature (25 °C) to 13 J under cryogenic conditions (−196 °C). Notably, a steep transition in impact energy occurred within the critical temperature window of −100 °C to −150 °C. Microstructural analysis revealed that synergistic effects of high strain rates and low temperatures significantly restrict dislocation slip and multiplication mechanisms, while also suppressing deformation twinning activation. This restricted plasticity accommodation mechanism fundamentally differs from the deformation characteristics reported in conventional low-carbon high-manganese steels and other face-centered cubic (FCC) alloy systems.

Temperature-Dependent Charpy Impact Toughness and Deformation Mechanisms of Austenitic Fe-32Mn-0.6C Steel

Barella, Silvia;Belfi, Marco;Gruttadauria, Andrea;Mapelli, Carlo
2025-01-01

Abstract

The Charpy impact toughness of single-phase austenitic Fe-32Mn-0.6C steel was systematically investigated across a wide temperature spectrum from 25 °C to −196 °C using Charpy V-notch impact tests. The material exhibited a remarkable temperature dependence of impact energy, decreasing dramatically from 120 J at ambient temperature (25 °C) to 13 J under cryogenic conditions (−196 °C). Notably, a steep transition in impact energy occurred within the critical temperature window of −100 °C to −150 °C. Microstructural analysis revealed that synergistic effects of high strain rates and low temperatures significantly restrict dislocation slip and multiplication mechanisms, while also suppressing deformation twinning activation. This restricted plasticity accommodation mechanism fundamentally differs from the deformation characteristics reported in conventional low-carbon high-manganese steels and other face-centered cubic (FCC) alloy systems.
2025
cryogenic mechanical properties; high-manganese steel; impact toughness; plastic deformation;
cryogenic mechanical properties
high-manganese steel
impact toughness
plastic deformation
File in questo prodotto:
File Dimensione Formato  
materials-18-02845.pdf

accesso aperto

: Publisher’s version
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1293454
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact