Cement production exceeds 4.1 billion tonnes annually, emitting 2.4 billion tonnes of CO2 annually, necessitating improved process control. Traditional models, limited to steady-state conditions, lack predictive accuracy for clinker mineralogical phases. Here, using a comprehensive two-year industrial dataset, we develop machine learning models that outperform conventional Bogue equations with mean absolute percentage errors of 1.24%, 6.77%, and 2.53% for alite, belite, and ferrite prediction respectively, compared to 7.79%, 22.68%, and 24.54% for Bogue calculations. Our models remain robust under varying operations and are evaluated for uncertainty and rare-event scenarios. Through post hoc explainable algorithms, we interpret the hierarchical relationships between clinker oxides and phase formation, providing insights into the functioning of an otherwise black-box model. The framework can potentially enable real-time optimization of cement production, thereby providing a route toward reducing material waste and ensuring quality while reducing the associated emissions under real-world conditions.
Industrial-scale prediction of cement clinker phases using machine learning
Montiel-Bohórquez, Néstor;Romano, Matteo;Gatti, Manuele;
2025-01-01
Abstract
Cement production exceeds 4.1 billion tonnes annually, emitting 2.4 billion tonnes of CO2 annually, necessitating improved process control. Traditional models, limited to steady-state conditions, lack predictive accuracy for clinker mineralogical phases. Here, using a comprehensive two-year industrial dataset, we develop machine learning models that outperform conventional Bogue equations with mean absolute percentage errors of 1.24%, 6.77%, and 2.53% for alite, belite, and ferrite prediction respectively, compared to 7.79%, 22.68%, and 24.54% for Bogue calculations. Our models remain robust under varying operations and are evaluated for uncertainty and rare-event scenarios. Through post hoc explainable algorithms, we interpret the hierarchical relationships between clinker oxides and phase formation, providing insights into the functioning of an otherwise black-box model. The framework can potentially enable real-time optimization of cement production, thereby providing a route toward reducing material waste and ensuring quality while reducing the associated emissions under real-world conditions.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025 - Fayaz, Montiel, Bishnoi, Romano, Gatti, Krishnan.pdf
accesso aperto
:
Publisher’s version
Dimensione
4.11 MB
Formato
Adobe PDF
|
4.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


