Integrating electric vehicles (EVs) has become integral to modern power grids to enhance grid stability and support green energy transportation solutions. EVs emerged as a promising energy solution that introduces a significant challenge to the unpredictable and dynamic nature of EV charging and discharging behaviors. These EV behaviors are performed by grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operations that create unpredictable disturbances in the power grid. These disturbances introduced a nonlinear dynamic that compromises grid stability and power quality. Due to the unpredictable nature of these disturbances, the conventional control design with dynamic model prediction cannot manage these disturbances. To address these challenges, a Physics-Informed Machine Learning (PIML)-enhanced Model Predictive Control (MPC) framework is proposed to learn the stochastic behaviors of the EV-introduced disturbance in the power grid. The learned PIML model is integrated into an MPC framework to enable an accurate prediction of EV-driven disturbances with minimal data requirements. The MPC formulation optimizes pre-emptive control actions to mitigate the disturbance and ensure robust grid stability and enhanced EV integration. A comprehensive convergence and stability analysis of the proposed MPC formulation uses Lyapunov-based proofs. The efficacy of the proposed control design is evaluated on IEEE benchmark systems, demonstrating a significant improvement in performance metrics, such as frequency deviation, voltage stability, and scalability, compared to the conventional MPC design. The proposed MPC framework offers scalable and robust real-time EV grid integration in modern power grids.
Enhancing Grid Stability Through Physics-Informed Machine Learning Integrated-Model Predictive Control for Electric Vehicle Disturbance Management
Ullah, Zahid;Gruosso, Giambattista
2025-01-01
Abstract
Integrating electric vehicles (EVs) has become integral to modern power grids to enhance grid stability and support green energy transportation solutions. EVs emerged as a promising energy solution that introduces a significant challenge to the unpredictable and dynamic nature of EV charging and discharging behaviors. These EV behaviors are performed by grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operations that create unpredictable disturbances in the power grid. These disturbances introduced a nonlinear dynamic that compromises grid stability and power quality. Due to the unpredictable nature of these disturbances, the conventional control design with dynamic model prediction cannot manage these disturbances. To address these challenges, a Physics-Informed Machine Learning (PIML)-enhanced Model Predictive Control (MPC) framework is proposed to learn the stochastic behaviors of the EV-introduced disturbance in the power grid. The learned PIML model is integrated into an MPC framework to enable an accurate prediction of EV-driven disturbances with minimal data requirements. The MPC formulation optimizes pre-emptive control actions to mitigate the disturbance and ensure robust grid stability and enhanced EV integration. A comprehensive convergence and stability analysis of the proposed MPC formulation uses Lyapunov-based proofs. The efficacy of the proposed control design is evaluated on IEEE benchmark systems, demonstrating a significant improvement in performance metrics, such as frequency deviation, voltage stability, and scalability, compared to the conventional MPC design. The proposed MPC framework offers scalable and robust real-time EV grid integration in modern power grids.| File | Dimensione | Formato | |
|---|---|---|---|
|
wevj-16-00292-v2.pdf
accesso aperto
:
Publisher’s version
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


