In several real-world sequential decision problems, at every step, the learner is required to select different actions. Every action affects a specific part of the system and generates an observable intermediate effect. In this paper, we introduce the Factored-Reward Bandits (FRBs), a novel setting able to effectively capture and exploit the structure of this class of scenarios, where the reward is computed as the product of the action intermediate observations. We characterize the statistical complexity of the learning problem in the FRBs, by deriving worst-case and asymptotic instance-dependent regret lower bounds. Then, we devise and analyze two regret minimization algorithms. The former, F-UCB, is an anytime optimistic approach matching the worst-case lower bound (up to logarithmic factors) but fails to perform optimally from the instance-dependent perspective. The latter, F-Track, is a bound-tracking approach, that enjoys optimal asymptotic instance-dependent regret guarantees. Finally, we study the problem of performing best arm identification in this setting. We derive an error probability lower bound, and we develop F-SR, a nearly optimal rejection-based algorithm for identifying the best action vector, given a time budget.2

Factored-Reward Bandits with Intermediate Observations: Regret Minimization and Best Arm Identification

Marco Mussi;Simone Drago;Marcello Restelli;Alberto Maria Metelli
2025-01-01

Abstract

In several real-world sequential decision problems, at every step, the learner is required to select different actions. Every action affects a specific part of the system and generates an observable intermediate effect. In this paper, we introduce the Factored-Reward Bandits (FRBs), a novel setting able to effectively capture and exploit the structure of this class of scenarios, where the reward is computed as the product of the action intermediate observations. We characterize the statistical complexity of the learning problem in the FRBs, by deriving worst-case and asymptotic instance-dependent regret lower bounds. Then, we devise and analyze two regret minimization algorithms. The former, F-UCB, is an anytime optimistic approach matching the worst-case lower bound (up to logarithmic factors) but fails to perform optimally from the instance-dependent perspective. The latter, F-Track, is a bound-tracking approach, that enjoys optimal asymptotic instance-dependent regret guarantees. Finally, we study the problem of performing best arm identification in this setting. We derive an error probability lower bound, and we develop F-SR, a nearly optimal rejection-based algorithm for identifying the best action vector, given a time budget.2
2025
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0004370225000815-main.pdf

accesso aperto

: Publisher’s version
Dimensione 2.13 MB
Formato Adobe PDF
2.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1292617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact