The food and energy systems face mounting challenges due to increasing demands and sustainability constraints, which impact their ability to efficiently utilize natural resources, such as land and freshwater. Among these challenges, competition for land between large-scale renewable energy production plants and agriculture poses a risk, especially for photovoltaics. Agrivoltaics offers an opportunity to synergistically use land for simultaneous production of energy and food. Recent studies have investigated the upscaling potential of agrivoltaics, moving from field scale analyses to larger-scale suitability assessments. Yet, studies addressing the interaction between crop dynamics and local climatic factors, as well as explicitly investigating hydrological dynamics of agrivoltaics across crops and climates, are still limited. Here, we first superpose a spatial data set of existing photovoltaic farms with different land use/land cover maps to assess the magnitude of land use competition associated with photovoltaics. Then, we use a spatialized agro-hydrological model to simulate the response to different levels of radiation attenuation of 22 non-irrigated crops in their harvested areas across the globe. We find that 22%–35% of rainfed harvested areas globally would maintain their yields if converted to agrivoltaics, while 13%–16% of ground-mounted photovoltaic plants globally are associated with a cropland to non-cropland transition. While carrying the typical limitations and uncertainties of global studies, our results may offer novel possibilities for cross-crop and cross-location comparisons of agrivoltaic experiences, as well as a basis to have a deeper and cross-scale understanding of the feasibility of photovoltaics.

Global Land‐Water Competition and Synergy Between Solar Energy and Agriculture

Curioni, Maddalena;Galli, Nikolas;Manzolini, Giampaolo;Rulli, Maria Cristina
2025-01-01

Abstract

The food and energy systems face mounting challenges due to increasing demands and sustainability constraints, which impact their ability to efficiently utilize natural resources, such as land and freshwater. Among these challenges, competition for land between large-scale renewable energy production plants and agriculture poses a risk, especially for photovoltaics. Agrivoltaics offers an opportunity to synergistically use land for simultaneous production of energy and food. Recent studies have investigated the upscaling potential of agrivoltaics, moving from field scale analyses to larger-scale suitability assessments. Yet, studies addressing the interaction between crop dynamics and local climatic factors, as well as explicitly investigating hydrological dynamics of agrivoltaics across crops and climates, are still limited. Here, we first superpose a spatial data set of existing photovoltaic farms with different land use/land cover maps to assess the magnitude of land use competition associated with photovoltaics. Then, we use a spatialized agro-hydrological model to simulate the response to different levels of radiation attenuation of 22 non-irrigated crops in their harvested areas across the globe. We find that 22%–35% of rainfed harvested areas globally would maintain their yields if converted to agrivoltaics, while 13%–16% of ground-mounted photovoltaic plants globally are associated with a cropland to non-cropland transition. While carrying the typical limitations and uncertainties of global studies, our results may offer novel possibilities for cross-crop and cross-location comparisons of agrivoltaic experiences, as well as a basis to have a deeper and cross-scale understanding of the feasibility of photovoltaics.
2025
global agro-hydrology
solar energy land use
water-energy-food Nexus
File in questo prodotto:
File Dimensione Formato  
Earth s Future - 2025 - Curioni - Global Land‐Water Competition and Synergy Between Solar Energy and Agriculture.pdf

accesso aperto

: Publisher’s version
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1292327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact