TikTok has skyrocketed in popularity over recent years, especially among younger audiences. However, there are public concerns about the potential of this platform to promote and amplify harmful content. This study presents the first systematic analysis of conspiracy theories on TikTok. By leveraging the official TikTok Research API we collect a longitudinal dataset of 1.5M videos shared in the U.S. over three years. We estimate a lower bound on the prevalence of conspiratorial videos (up to 1000 new videos per month) and evaluate the effects of TikTok's Creativity Program for monetization, observing an overall increase in video duration regardless of content. Lastly, we evaluate the capabilities of state-of-the-art open-weight Large Language Models to identify conspiracy theories from audio transcriptions of videos. While these models achieve high precision in detecting harmful content (up to 96%), their overall performance remains comparable to fine-tuned traditional models such as RoBERTa. Our findings suggest that Large Language Models can serve as an effective tool for supporting content moderation strategies aimed at reducing the spread of harmful content on TikTok.

Conspiracy Theories and Where to Find Them on TikTok

Francesco Corso;Francesco Pierri;
2025-01-01

Abstract

TikTok has skyrocketed in popularity over recent years, especially among younger audiences. However, there are public concerns about the potential of this platform to promote and amplify harmful content. This study presents the first systematic analysis of conspiracy theories on TikTok. By leveraging the official TikTok Research API we collect a longitudinal dataset of 1.5M videos shared in the U.S. over three years. We estimate a lower bound on the prevalence of conspiratorial videos (up to 1000 new videos per month) and evaluate the effects of TikTok's Creativity Program for monetization, observing an overall increase in video duration regardless of content. Lastly, we evaluate the capabilities of state-of-the-art open-weight Large Language Models to identify conspiracy theories from audio transcriptions of videos. While these models achieve high precision in detecting harmful content (up to 96%), their overall performance remains comparable to fine-tuned traditional models such as RoBERTa. Our findings suggest that Large Language Models can serve as an effective tool for supporting content moderation strategies aimed at reducing the spread of harmful content on TikTok.
2025
63rd Annual Meeting of the Association for Computational Linguistics, ACL 2025
File in questo prodotto:
File Dimensione Formato  
ACL_CT_and_where_to_find_them_on_TikTok-4.pdf

accesso aperto

Dimensione 778.99 kB
Formato Adobe PDF
778.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1292086
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact